EXCAVATIONS OF AN EARLY IRON AGE BUILDING
AND ROMANO-BRITISH ENCLOSURE AT
BRIGHTON HILL SOUTH, HAMPSHIRE

By D COE and R NEWMAN
with a contribution by E L MORRIS

ABSTRACT

The excavations of Site X/Y at Brighton Hill South, near Basingstoke are described. The work undertaken in 1990 revealed remains of Iron Age and Romano-British date. It adds new information to the extensive earlier investigations in the area. The ceramics are analysed and discussed in some detail.

INTRODUCTION

In December 1989 a planning application was received by Basingstoke and Deane Borough council from McLean Homes South West Ltd to build 76 houses, associated garages, car parking areas and roads at area U of the Brighton Hill South development area. The application covered 4.29 hectares of a gently sloping, south-east facing, dry valley side, centred on SU 612 488. Planning permission was granted subject to the developers allowing access for archaeological investigations prior to the commencement of building works. The Trust for Wessex Archaeology was commissioned by Hampshire's County Archaeological Officer to carry out a small scale excavation and watching brief in the north-east corner of the proposed development area, where a number of cropmarks had been plotted (Site X/Y). The work was carried out between 26 February and 14 March, 1990.

ARCHAEOLOGICAL BACKGROUND

The Brighton Hill South developments have been the subject of substantial archaeological investigations in recent years. Wessex Archaeology carried out a series of excavations from 1984 to 1986 (Fasham and Keevil forthcoming). All four of the cropmark complexes revealed on aerial photographs were assessed. One was shown to be a deserted medieval settlement, two were Iron Age enclosures (sites B/C and K fig 1), and site X/Y produced results which indicated that its archaeological potential was limited. Sites B/C and K were subsequently the subject of trial excavations. Site B/C lies 350 m to the south-west of site X/Y, and excavations produced a date range of early-middle Iron Age through to the late Iron Age/early Romano-British period. Similarly site K, which lies 250 m to the south-east of site X/Y, produced a date range of early Iron Age to late Iron Age/early Romano-British.

In 1987 further evaluation work was carried out by Wessex Archaeology adjacent to Beggarwood Lane, 1.5 km south-west of site X/Y (Gingell and Trott 1987 and Fasham and Keevil forthcoming). This revealed features of apparently middle Iron Age date associated with cropmarks relating to a series of enclosures. Most recently, watching briefs have been carried out on development work located approximately 450 m south of site X/Y. In November 1989 linear features which appear to be Iron Age field boundaries were noted (Farwell 1989). In January 1990 a further watching brief produced artefactual evidence of late Iron Age/early Romano-British date, associated with further probable field boundaries (Trott 1990).

THE SITE (Fig 1)

Site X/Y lies in the middle of the north-east...
Fig 1. Location Plan.
end of the Brighton Hill South development area, 5 km south-west of the centre of Basingstoke (Fig 1). The geology of the area is generally Upper Chalk Beds with localised drift deposits of Clay-with-flints. The site occupies approximately 0.67 ha in the south-west corner of the area, at a height of about 140 m above Ordnance Datum. At the time of the investigations the area was under rough grassland and some development work had begun including the stripping of topsoil for the estate access road which runs up the centre of the site. Further development work was ongoing during the duration of the project.

The archaeological potential of the site was recognised by aerial photographs showing cropmarks of what appeared to be an enclosure (possible double-ditched), associated field systems and a possible trackway (Fig 2). Further evidence of archaeological activity was gleaned from phosphate analysis of the topsoil in this area. Whilst phosphate levels from within the enclosure were low, those from the area of the enclosure ditch and immediately outside to the east of the enclosure were more substantial, with readings of up to 850 ppm.

Apart from the phosphate analysis, two inconclusive test pits were excavated in the vicinity of site X/Y, but no further evaluation work was undertaken. The evaluation work was substantially and understandably conditioned by evidence from aerial photographs, with investigations being concentrated on the cropmark sites. As site X/Y appeared to be the least likely to produce occupation evidence, on the basis of these evaluations, further work...
was concentrated on the other cropmark complexes; the medieval settlement and the Iron Age enclosure complexes at sites K and B/C (Fig 1). Thus site X/Y was the only cropmark complex within the development area not to be surveyed using geophysical techniques, during the course of the Brighton Hill South Heritage Project. The development in 1990 of part of site X/Y presented an opportunity to investigate, even if only in a limited manner, one of the less well known components of the substantial archaeological landscape of the Brighton Hill South development area.

STRATEGY AND METHODS

The strategy proposed for the investigation of the site involved the excavating of four trenches covering a total area of 400 m²; all features exposed were to be recorded, with sufficient manual excavation of them to determine their dates and nature. In addition it was intended to hand excavate a series of test pits across the area to determine the density and distribution of artefacts through the soil profile. Once on site this strategy was modified, following consultations with the County Council’s Archaeological Officers, to take account of changing circumstances. Due to additional machine time being available, it was decided to open up extra trenches and also to expand trenches in areas where greater archaeological potential was recognised. This increased the size of the excavated area to 522 m². In addition an area at the north-east end of the site (trench G) was stripped to natural chalk by the building contractors during construction of the road. An inspection revealed archaeological features within the area; and in order to explore them more fully another small trench (trench H) was opened up to the east, adding another 80 m² to the total area (fig 3).

The extra areas excavated, together with the large number of features found, meant that only features of good archaeological potential were investigated, and these could only be sampled. Furthermore, it was deemed unnecessary to excavate the test pits since in the event these would not assist the analysis of the site.

The trenches were cleaned using a tracked 360° excavator with a toothless grading bucket. Topsoil, 0.20 m deep and subsoil, 0.10 m deep was removed to reveal the natural chalk surface. This was generally loose and degraded in nature, containing frequent large flint nodules. This surface was cleaned by hand only where a clarification of features was required, although generally feature definition was good.

THE RESULTS

The basic data from excavated features is contained in tabulated form in the site archive. The results discussed here relate to features of certain archaeological origin and of relevance to the perceived nature of the site. Most of the finds from the site were ceramic, and these have been examined in detail. The remainder of the material consisted of small artefact type assemblages without significant individual items and have not been, therefore, examined in detail. The quantification of all finds is summarised in Table 1.

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
<th>Weight</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal bone</td>
<td>68</td>
<td>1437 g</td>
<td></td>
</tr>
<tr>
<td>Burnt flint</td>
<td>10</td>
<td>621 g</td>
<td></td>
</tr>
<tr>
<td>Ceramic Building Material</td>
<td>6</td>
<td>104 g</td>
<td></td>
</tr>
<tr>
<td>Flint</td>
<td>7</td>
<td>106 g</td>
<td></td>
</tr>
<tr>
<td>Pottery</td>
<td>278</td>
<td>3521 g</td>
<td></td>
</tr>
<tr>
<td>Slag</td>
<td>1</td>
<td>24 g</td>
<td></td>
</tr>
<tr>
<td>Stone</td>
<td>3</td>
<td>302 g</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>3</td>
<td></td>
<td>All nails</td>
</tr>
</tbody>
</table>
Key:

--- Extent of road construction corridor

- Archaeological feature

- Possible archaeological feature

- Natural feature

Fig 3. Site Plan.
Trench Descriptions

Trench A
One feature containing Early Iron Age material and five containing Romano-British material were noted, together with an undatable ditch and post-hole.

A small pit or possibly a post-hole (041), 0.73 m long by 0.55 m wide and 0.35 m deep, was found to contain early Iron Age pottery in one of its fills (040). It is possible that this fill represents a post-pipe.

A ditch, 004 (section 2, fig 3), ran across the trench in a north-west/south-east direction, this was 1.90 m wide and 0.30 m deep and produced pottery suggestive of a mid-Roman date. This ditch was cut by a post-hole, 010, which did not contain datable artefacts. Other features of a Roman date were gullies, (055 & 065), a post-hole, 066, and a hollow, 064, all of which fall into the mid to late Roman period. Another linear feature, 013 (section 3, fig 3), ran across the trench roughly parallel to, and 6 m to the south-west of, 004. This ditch was more irregular in nature and produced no datable finds.

Trench B
Trench B was of little interest archaeologically since this area had been heavily disturbed by modern activities (fig 3). The trench contained only one potential feature which was probably of natural origin.

Trench C
Part of a large ditch, containing fills of Roman date, was recorded (section 1, fig 4).

Ditch 302 measured 2.65 m in width with a depth of 0.64 m and was the largest linear feature noted on the site. Its sides sloped at 45° and its base was flat. The ditch was aligned north-west/south-east and may relate to one of two discontinuous linears noted on the aerial photographs. The uppermost fill of the ditch (303) produced large quantities of pottery and two iron nails. The pottery was mixed with a few sherds of late Iron Age/early Roman date but was dominated by later material of the mid-late Roman period. Of the other fills only 304 produced pottery, a single sherd of late Iron Age date.

The projected line of this ditch would have carried it through the area of modern disturbance in trench B, so its absence there was not surprising. It was also anticipated in trench A, but again it was absent and is therefore assumed to terminate or turn before reaching this point.

Trench D
The features from this trench produced no finds, although two post-holes, four pits and a gully were recorded.

Trench E
Only one archaeological feature was noted in this trench, a pit of uncertain date.

Pit 510 which was over 2 m long, 2 m wide and 0.55 m deep, with vertical sides and a flat base. It produced one body sherd of second millennium BC grog tempered pottery, although this was found very close to the top of its single fill, 507, and may not indicate the true date of the feature.

Trench F
Trench F produced three undated features of archaeological interest, all grouped together.

Pit 613 merged into the gully 614 which ran east-west across the trench for 4.2 m before terminating. After a gap of 0.25 m, the gully appeared to continue to the edge of the trench as feature 616. None of the fills of these features provided any dating evidence.

Trenches G and H (fig 4)
These two trenches are considered together since trench H was excavated solely as an extension to trench G and the features found in each trench all appear to be components of a single structure, consisting in total of 17 post-holes. Pottery was found in nine post-holes, all of it being of an early Iron Age date.

Seventeen post-holes were noted of which all but four were excavated. The post-holes appear to form a double arc, seven post-holes in the inner arc and seven in the outer, presumably forming the south-west side of a circular building with a diameter of approximately 8–9 m. Twelve of the post-holes appear to be paired (Fig 5). A further four post-holes were found which whilst not on the line of the arcs are assumed to be associated with this structure. There did not appear to be any difference in the size or form of the
Fig 4. Ditch Sections.
Fig 5. Double Arc of Post-Holes.
post-holes between the outer and the inner rings. A mixture of dimensions was found in both rings, with sizes ranging from a diameter of 0.20 m to 0.40 m and a depth of 0.15 m to 0.35 m. As no floor surfaces were evident and the topsoil was shallow, it is likely that some truncation had occurred.

Of the nine post-holes which produced Early Iron Age pottery, three of them (701, 1018 and 1019), contained large quantities of vitrified pottery, originating from two or more vessels. Post-hole 707 also produced similar material, although not as highly vitrified as the rest. Other post-holes, 703, 705, 1012, 1015 and 1017, produced pottery of a similar date, but none of it vitrified. Post-hole 1015 was not part of the double ring of post-holes and its relationship to them is not clear.

THE POTTERY

By Elaine L Morris incorporating observations from Andrew Middleton and David F Williams

A small quantity of prehistoric, Roman and post-medieval pottery (263 sherds) was recovered at Brighton Hill South site X/Y (Table 2). The latter consists of a single glazed earthenware sherd found during site clearance and is not discussed further. The prehistoric pottery includes one Bronze Age sherd from a feature in trench E and a collection of Early Iron Age sherds, several of which had been severely burnt, recovered from the post-holes of a structure in trenches G/H. The Roman pottery is predominantly later Roman in date and includes both coarsewares and finewares.

Later Prehistoric Pottery

The later prehistoric pottery consists of 108 sherds (weighing 1765g), which were recovered from trenches E, G and H, and general clearance of site X/Y (Table 2). The condition of the pottery, the fabrics, forms and decorations, and the dating evidence are discussed below. Due to the unusual nature of the pottery, the condition of the sherds is presented first.

The Condition of the Pottery

Large and small sherds of handmade pottery were recovered from nine out of 13 excavated post-holes in the double-ring structure in trenches G/H. The majority of these sherds were cracked, blistered, bloated and distorted in varying degrees of heat induced alteration (Table 3). The exterior surfaces of the sherds are full of tiny holes. Some sherds displayed the variation of alteration across the sherd length, while others displayed differences in the effect between the altered outside and unaltered inside of the individual sherds. In only one case was the alteration apparent on the broken edges of the sherd, and this is a rim sherd (Fig 6, 8). Therefore, the nature of this heat alteration appears to have occurred when the vessels were complete since it is always the outside, or upper edge, which is affected. Because these vessels are nearly, partially or almost completely vitrified, it was assumed that the degree of heating was above 900–950° Centigrade (Rye 1981, 108) and it was therefore, decided to analyse a sample for more accurate determination of temperature.

Two sherds (one body sherd from post-hole 701 and the rim sherd, Fig 6, 8) were selected by Dr Andrew Middleton, of the British Museum Research Laboratory, for heating temperature determination and duration by scanning electron microscopy, equipped with an energy-dispersive x-ray analyser for elemental analysis. This analysis determined a final temperature in the region of 1100° Centigrade and a heating duration of up to one hour (Research Laboratory report RL/6067; in archive). Therefore, the altered, later prehistoric pottery recovered from these post-holes had been heated a second time to a temperature beyond that possible in an open fire or bonfire kiln, the normal firing technique utilised during later prehistory. Open firings and bonfires have been recorded as achieving generally less than 900° Centigrade (Woods 1982), it being necessary to have a kiln with an updraught or downdraft system in operation for temperatures above 1000° to be reached (Rye 1981, table 3).

This distorted pottery, therefore, is probably not the waste from pottery production but the results of exposure to high temperatures, after the pottery had first been fired for use. It is
Table 2: Quantification of the Pottery by Fabric and Fill Numbers by Trench
(number of sherds/weight of sherds in grammes)

General Clearance and Trenches A and C

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>U/S 4</th>
<th>41</th>
<th>55</th>
<th>64</th>
<th>65</th>
<th>66</th>
<th>302</th>
<th>TOTAL</th>
</tr>
</thead>
</table>

Later Prehistoric Pottery

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>1/37</th>
<th>3/23</th>
<th>1/4</th>
<th>1/3</th>
<th>1/3</th>
<th>1/3</th>
<th>4/60</th>
</tr>
</thead>
</table>

Roman Pottery (including immediate pre-conquest)

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>3/39</th>
<th>1/17</th>
<th>1/4</th>
<th>1/3</th>
<th>1/7</th>
<th>1/1</th>
<th>3/15</th>
<th>9/78</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>1/2</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>1/1</th>
<th>2/3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>2/39</th>
<th>2/39</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>1/6</th>
<th>-</th>
<th>1/6</th>
<th>1/6</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>4/19</th>
<th>1/19</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>4/50</th>
<th>9/88</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>4/22</th>
<th>16/266</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>35/360</th>
<th>55/648</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>1/30</th>
<th>-</th>
<th>1/1</th>
<th>-</th>
<th>1/3</th>
<th>18/116</th>
<th>21/150</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>3/57</th>
<th>5/22</th>
<th>1/1</th>
<th>1/2</th>
<th>-</th>
<th>-</th>
<th>1/26</th>
<th>11/108</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>3/11</th>
<th>4/24</th>
<th>-</th>
<th>-</th>
<th>1/8</th>
<th>1/8</th>
<th>15/212</th>
<th>24/263</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>1/9</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>1/9</th>
<th>1/9</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>1/1</th>
<th>-</th>
<th>1/4</th>
<th>1/4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>4/7</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>-</th>
<th>-</th>
<th>1/1</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>2/4</th>
<th>3/5</th>
</tr>
</thead>
</table>

Post-Medieval Pottery

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>1/5</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>1/5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>1/5</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>510</th>
<th>701</th>
<th>703</th>
<th>705</th>
<th>707</th>
<th>1012</th>
<th>1015</th>
<th>1017</th>
<th>1018</th>
<th>1019</th>
<th>TOTAL</th>
</tr>
</thead>
</table>

Trenches E, G and H

| Fabric Features | 34/674| 3/14 | 1/4 | 8/59 | 3/10 | 1/1 | 2/3 | 18/461| 33/470| 104/1705|
|-----------------|------|------|------|------|------|------|------|-------|-------|--------|-------|

Later Prehistoric Pottery

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>2/3</th>
<th>-</th>
<th>-</th>
<th>2/3</th>
<th>1/9</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>1/3</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>-</th>
<th>1/4</th>
<th>4/37</th>
<th>3/10</th>
<th>-</th>
<th>-</th>
<th>18/461</th>
<th>27/439</th>
<th>89/1564</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>-</th>
<th>1/75</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>1/75</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fabric Features</th>
<th>-</th>
<th>4/22</th>
<th>1/1</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>6/31</th>
<th>11/54</th>
</tr>
</thead>
</table>

| Fabric Features | 1/9 | 34/674| 3/14 | 1/4 | 8/59 | 3/10 | 1/1 | 2/3 | 18/461| 33/470| 104/1705|
|-----------------|------|------|------|------|------|------|------|------|-------|-------|--------|-------|
Fig 6. Pottery from Brighton Hill South: Site X/Y.
Table 3: Heat-Affected Sherds and Non-Affected Sherds by Feature
(number of sherds, weight of sherds in grammes, mean sherd size in grammes)

<table>
<thead>
<tr>
<th>Trench/Feature</th>
<th>Non-Affected</th>
<th>Heat-Affected</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Wt MSS</td>
<td>No Wt MSS</td>
<td></td>
</tr>
<tr>
<td>G/701</td>
<td>12 66 5.5</td>
<td>22 608 27.6</td>
<td>spalling on inside, but traces of surface smoothing visible; ext. has burnt patches of vitrified or liquidised clay, surface cracking/vesicular texture; sherds are twisted, bloated, distorted; includes one sherd (PS100) selected for heat analysis; inc. Fig 5, 2</td>
</tr>
<tr>
<td>G/703</td>
<td>1 1 1.0</td>
<td>2 13 6.5</td>
<td>ext. ?isotropic grey</td>
</tr>
<tr>
<td>G/705</td>
<td>0 0 0</td>
<td>1 4 4.0</td>
<td>burnt</td>
</tr>
<tr>
<td>G/707</td>
<td>1 3 3.0</td>
<td>7 56 8.0</td>
<td>burnt, twisted, isotropic grey; includes Fig 5, 3</td>
</tr>
<tr>
<td>H/1012</td>
<td>3 10 3.3</td>
<td>0 0 0</td>
<td>includes Fig 5, 13</td>
</tr>
<tr>
<td>H/1015</td>
<td>1 1 1.0</td>
<td>0 0 0</td>
<td></td>
</tr>
<tr>
<td>H/1017</td>
<td>2 3 1.5</td>
<td>0 0 0</td>
<td></td>
</tr>
<tr>
<td>H/1018</td>
<td>1 6 8.0</td>
<td>17 453 26.6</td>
<td>cracked surfaces; melted top of rim edge (Fig 5, 9), blistered, distorted, bloated, cracked; Fig 5, 8 was selected for heat analysis (PS101); inc. Fig 5, 8-12</td>
</tr>
<tr>
<td>H/1019</td>
<td>1 4 4.0</td>
<td>32 466 14.6</td>
<td>extremely blistered; distorted; includes Fig. 5, 4-7</td>
</tr>
</tbody>
</table>

suggested that the post-ring structure may have caught fire, the door and any other openings providing the flue-draught necessary to achieve the high temperature. It is likely that the pottery vessels recovered were the vessels last in use in the structure at the time of the fire. The small unaffected sherds may well have been remnants of old broken vessels swept into the corners of the structure during regular occupation.

The Fabrics
Within this collection, five fabric types were defined including one flint-tempered, one grog-tempered and three sandy fabrics. The grog-tempered fabric, represented by a single body sherd from feature 510 in trench E, has been identified as a Bronze Age type of second millennium BC date (R Cleal, pers comm). The other fabrics are typical of the Early Iron Age potting tradition in the area.

All of the fabrics could have been made from local resources. The area immediately around Brighton Hill South (within 5 km) contains Upper Chalk, Clay-with-flints and clayey deposits in the terrace and alluvium, while the surrounding geological deposits, up to 15 km distance, consist of Reading Beds, London Clay, Bagshot Beds, Bracklesham Beds and Upper Greensand (Geological Survey of Great Britain).
Sherds from fabrics F1, Q1, Q2 and Q3 were selected for thin-sectioning and petrological analysis (Table 4); this work was conducted by Dr David F Williams at the University of Southampton, and his observations are incorporated into this report (see archive for details).

Table 4: Sherds Selected for Petrological Analysis

PS20	fabric F1, context 40, record 2035
PS21	fabric Q1, context 700, record 2086
PS22	fabric Q1, context 700, record 2100, Fig 5, 2
PS23	fabric Q2, context 1003, record 2120, Fig 5, 6
PS24	fabric Q3, context 1003, record 2120, Fig 5, 6

Flint-Tempered Fabric

F1 *Flint-tempered sandy fabric* (6 sherds/63 g)

A sandy clay matrix containing a moderate to common amount (10-15%) of well-sorted, angular, calcined flint fragments, usually 2.0 mm or less across, and a rare (1%) amount of larger flint fragments which are patinated, not calcined, detritus material; the quartz grains are sub-rounded to rounded in shape, less than 0.5 mm across, and found in moderate concentration; firing – either completely oxidised or oxidised exterior only.

Grog-Tempered Fabric

G1 *Soft, grog-tempered fabric* (1 sherd/9 g)

Buff-coloured, soft, macroscopically sand-free clay matrix containing a moderate to common amount (15-25%) of fine and well-sorted grog inclusions, 1.0 mm or less across and a rare (1-2%) amount of unidentified, black, sub-rounded inclusions which are 3.0 mm or less in size; firing-oxidised exterior, unoxidised interior and core.

Sandy Fabrics

Q1 *Sandy fabric with rare flint and detritus* (89 sherds/1456 g)

A moderate to common amount (15-20%) of sub-rounded to rounded quartz grains, measuring 1.0 mm or less, with a rare to sparse amount (1-5%) of subangular to angular flint and rare (1% or less), very large pieces of sub-rounded to rounded flint or other rock detritus, measuring 5-12.0 mm across; there is a noticeable amount of very fine quartz or mica in the fabric; macroscopically similar to fabric 4 from Brighton Hill South Sites B/C and K (Rees, forthcoming); petrological analysis indicated one sample (PS21) having glauconite pellets and the other sample (PS22) with none; these samples have been grouped petrologically with Fabrics 2, 3 and 4 from Brighton Hill South sites B/C and K.

Q2 *Sandy fabric with clay pellets and organic matter* (1 sherd/75 g)

A fine, dense fabric containing a moderate amount of microscopic quartz grains, 0.1 mm or less across, rare (1-2%) rounded quartz grains measuring 0.3-0.1 mm across, sparse (3-7%) rounded clay pellets, 3.0 mm or less across and rare pieces of organic matter, 5.0 mm or less long.

Q3 *Very fine, silty fabric* (11 sherds/54 g)

A very fine fabric which appears to contain a common amount of microscopic quartz silt, measuring less than 0.1 mm, and rare examples of subangular to angular flint, measuring 1.0 mm or less across.

Vessel Forms

There are nine separate rims, one base and five angled sherds in the later prehistoric pottery collection (Table 5). Amongst these sherds, three diagnostic rim forms and two types of angled sherds from different vessel forms were identified.

R1 *Very long-necked, vertical or flaring rim jar* (Fig 6, 1)

The upper rim edge is flattened; probably from a large jar; length of rim to neck is greater than 55 mm; fabric Q1; diameter 280-300 mm; one vessel, record 2000; similar to form JB2.1-2 from Cowdery's Down (Thompson 1983, figs 17, 13; 18, 24; 19, 41), Danebury (Cunliffe 1984, figs 6.28-29; 6.84, 693 and 983; 6.87, 711-712), Old Down Farm (Davies 1981, fig 15, 22-24, 47), Quarley Hill (Hawkes 1939, fig 16, 1-4), Ructstalls Hill (Oliver & Applin, fig 15, 1 and 4), Winklebury (Smith 1977, fig 29, 11, 20-21), Winnall Down
Table 5: Correlation of Early Iron Age Fabrics to Vessel Forms by Feature/Figure

<table>
<thead>
<tr>
<th>Fabric</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>1(Fig 6, 1) — — — — —</td>
</tr>
<tr>
<td>Q1</td>
<td>4 (Fig 6, 2, 1 (Fig 6, 9, 3, 5, 10) 13)</td>
</tr>
<tr>
<td>Q2</td>
<td>2 (701; Fig 6, 4)</td>
</tr>
<tr>
<td>Q3</td>
<td>1 (Fig 6, 6) 2 (707; Fig 6, 7)</td>
</tr>
</tbody>
</table>

(Hawkes 1985, fig 53, 33); seventh to fifth centuries BC.

R2 Medium to long-necked, flaring rim bowl (Fig 6, 2–3, 5–6, 10)
The rim edge is smoothly rounded; length of neck 35–55 mm; two examples decorated with furrows at neck to body zone; fabrics Q1 and Q3; diameter ranges 120–140 and 260–300 mm; five vessels, records 2100, 2104, 2117, 2120, 2127; probably from carinated bowls similar to Meon Hill (Liddell 1933, pls 23, P.359; 27, P.123–124, P.126, P.133), Old Down Farm (Davies 1981, fig 30, 15), Winklebury (Smith 1977, fig 31, 26) and Winnall Down (Hawkes 1985, fig 52, 18); seventh to sixth centuries BC.

R3 Ovoid, or convex profile, closed jar form (Fig 6, 9 and 13)
Has a slight bevel edge internally; fabrics Q1 and Q3; diameters indeterminate; one example decorated with finger-tip impressions on exterior rim edge; two vessels, records 2126 and 2136; similar to Cowdery’s Down (Thompson 1983, fig 17, 5–6), Ructstalls Hill (Oliver & Applin 1979, fig 15, 3) and Winklebury (fig 31, 9–10); seventh to sixth centuries BC.

R99 Undiagnostic form (Fig 6, 8)
Due to distortion; fabric Q1; decorated with finger-tip impressions on exterior rim edge; one vessel, record 2125.

B1 Flat base
One example only; fabric Q1; record 2118.

A1 Angled sherd from a shouldered jar (Fig 6, 4)
One example has finger-tip impressions on the shoulder angle; fabrics Q1 and Q2; records 2099 and 2114/2115.

A2 Angled sherd from a carinated bowl (Fig 6, 7)
burnished on the interior surface; fabrics Q3; records 2105 and 2123.

Decorations and Surface Treatments
There are four types of decoration in the collection: finger-tip impressions on the exterior of the rim and shoulder zone of jars (Fig 6, 4, 8–9), applied and pinched or impressed strip (Fig 6, 11) on the body of jars, furrows on the neck to shoulder zone (Fig 6, 2–3) of carinated bowls and shallow grooves on an unidentified vessel form (Fig 6, 12). The first two techniques were commonly found on Early Iron Age coarseware jars at Cowdery’s Down (Thompson 1983, figs 17–19) and also at Old Down Hill, Old Down Farm, Winklebury and Winnall Down but were extremely rare at Danebury (Cunliffe 1984, 310). Furrows were frequently found on burnished carinated bowls at Cowdery’s Down (Thompson 1983, fig 18, 30A), and also at Old Down Farm, Winklebury and Winnall Down, but again were very rare at Danebury. Shallow, patterned grooves occur on Early Iron Age vessels at Cowdery’s Down
Due to the additional burning at an extreme temperature, the surfaces of all the very burnt vessels are usually completely altered. Traces of burnishing still adhere to the surfaces of a few sherds where the extra burning is not as extreme (e.g., Fig 5, 3), or on the small sherds which were not burnt. Haematite coating, an occasional occurrence on Early Iron Age sherds from east Hampshire, is not noticeable, but this may be due to the condition of the sherds.

Evidence of Use

None of the later prehistoric pottery displayed evidence of use, such as sooting, food deposits, limescale, pitting on the interior or internal scouring. This may, again, be due to the effects of heat damage on the vessels' surfaces, since the Roman period pottery from trenches A and C does have visible sooting and limescale.

Dating Evidence

Several aspects about this small group of vessels indicate that the pottery is probably late seventh century BC in date.

There are two large jars (Fig 6, 1 and 8), one of which has finger-tip impressions and was recovered from the same post-hole (feature 1018) as several body sherds including the example with the applied strip (Fig 6, 11), and two ovoid jars (Fig 6, 9 and 13), one which is also decorated with impressed finger-tipping from the same post-hole and one which is undecorated from feature 1012. In addition, there are two different jars represented by three angled sherds, one of which is decorated with finger-tip impressions (Fig 6, 4). These six jars are typical of the seventh to sixth centuries BC.

In addition, there are five different bowls (Fig 6, 2–3, 5–6, 10), two of which have furrowed decoration, and two carinated sherds from bowls (Fig 6, 7). One was recovered from post-hole 701 which also contained an angled jar sherd and one from post-hole 1018 with the undiagnostic decorated jar and applied strip sherd. Two sets of two, each with different fabrics, were recovered from postholes 707 and 1019. These seven long-necked vessels are likely to have originated from the carinated bowls which are also seventh to sixth century BC in date, as is the furrowed type of decoration.

The direct association of the same types of jars and bowls in so many different post-holes indicates that the filling of these features is likely to have occurred at the same time. Although this is a small collection, the large number of decorated vessels is striking; there are four decorated examples of rims amongst nine different rim sherds, and one of the vessels represented only by angular sherds is also decorated from amongst three separate vessels. This suggests that the collection is more likely to date from the late seventh to early sixth century BC because decoration increased in frequency during the Early Iron Age period. The absence of rounded bowl forms, however, suggests that the collection was deposited prior to the manufacture of this distinctive vessel type in the sixth–fifth century BC. These forms are found at Danebury (Cunliffe 1984, 281, types BA2 and BB1), Little Somborne (Neal 1980, figs 15, 60; 16, 78), Meon Hill (Liddell 1933, pls 25–27), Old Down Farm phase 4 (Davies 1981, fig 21, 70), Quarley Hill (Hawkes 1939, fig 15, 5) and Winnall Down and Easton Lane (Hawkes 1985, fig 52; 1989, fig 91, 4) but are not found at Cowdery's Down or Winklebury. Therefore, a date of late seventh century BC is suggested for this collection, with the caveat that it is a small assemblage. The occupation of this multi-ring post-hole structure was probably contemporary with some of the phase 3 activity at Old Down Farm, the Early Iron Age phase at Winklebury and possibly the phase IA occupation at Ructstalls Hill.

The destruction of this post-ring building occurred prior to the Early–Middle Iron Age occupation at Sites B/C and K Brighton Hill South, as well as that at the nearby sites of Viables Farm, Danebury, Little Somborne, Meon Hill, phase 4 Old Down Farm and Quarley Hill. Phase 3 at Winnall Down also appears to be slightly later.
Summary
The later prehistoric pottery from Site X/Y consists of the earliest prehistoric pottery from the Brighton Hill South complex, a single body sherd of Bronze Age date and sherds from at least nine different Early Iron Age vessels from the multi-ring post-hole structure in trenches G and H. A large number of the sherds from the latter vessels are blistered and distorted to an extent that the vessel surfaces, wall thickness and shape have been altered to such a state as to be unusable for detailed analysis. This destruction of the vessels has been interpreted as occurring in a building fire, when the vessels were complete. The forms and decoration which were recognised are similar to seventh century BC material in the area and the proportion of decorated vessels suggest that the post-holes were infilled with these broken vessels during or just after the late seventh century.

Late Iron Age and Roman Pottery
Late Iron Age, Romano-British and samian pottery was recovered from six features in trenches A and C, and from general area clearance (Table 2). The assemblage consists of 154 sherds (1561 g). The fabric types and forms are listed or briefly described here as necessary and the general dating of this pottery is discussed.

The Fabrics
The collection of Late Iron Age and Roman period pottery consisted of 14 different definable fabric types, including two well-established, non-local fabrics (samian and Oxfordshire colour-coated ware), two flint-tempered fabrics, three grog-tempered fabrics and seven sandy fabrics consisting of orange and grey wares, and a black-burnished-type ware. Table 6 summarises the amount of each fabric type.

Established Fabrics
E170 Oxfordshire red-slipped ware (Young 1975) (9 sherds/78 g)

Table 6: Quantification of Late Iron Age and Roman Period Pottery by Fabric (weight in grammes)

<table>
<thead>
<tr>
<th>Fabric</th>
<th>Number</th>
<th>Weight</th>
<th>%Number</th>
<th>%Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>E170</td>
<td>9</td>
<td>78</td>
<td>5.8</td>
<td>5.0</td>
</tr>
<tr>
<td>E300</td>
<td>2</td>
<td>3</td>
<td>1.3</td>
<td>0.2</td>
</tr>
<tr>
<td>F100</td>
<td>2</td>
<td>39</td>
<td>1.3</td>
<td>2.5</td>
</tr>
<tr>
<td>F101</td>
<td>1</td>
<td>6</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>G100</td>
<td>9</td>
<td>93</td>
<td>5.8</td>
<td>6.0</td>
</tr>
<tr>
<td>G101</td>
<td>4</td>
<td>56</td>
<td>2.6</td>
<td>3.6</td>
</tr>
<tr>
<td>G102</td>
<td>3</td>
<td>15</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Q100</td>
<td>9</td>
<td>88</td>
<td>5.8</td>
<td>5.6</td>
</tr>
<tr>
<td>Q101</td>
<td>55</td>
<td>648</td>
<td>35.7</td>
<td>41.5</td>
</tr>
<tr>
<td>Q102</td>
<td>21</td>
<td>150</td>
<td>13.6</td>
<td>9.6</td>
</tr>
<tr>
<td>Q103</td>
<td>11</td>
<td>108</td>
<td>7.1</td>
<td>6.9</td>
</tr>
<tr>
<td>Q104</td>
<td>24</td>
<td>263</td>
<td>15.6</td>
<td>16.8</td>
</tr>
<tr>
<td>Q105</td>
<td>1</td>
<td>9</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Q106</td>
<td>3</td>
<td>5</td>
<td>2.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>154</td>
<td>1561</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

E300 Samian (2 sherds/3 g)
F100 Moderately well-sorted, flint-tempered fabric (2 sherds/39 g)
A moderate amount (10-15%) of moderately well-sorted, angular, calcined flint, measuring 2.0 mm or less across, in an extremely micaceous clay matrix which is very smooth to the touch, but hard-fired; firing condition – unoxidised; handmade.

F101 Poorly-sorted, flint and grog-tempered fabric (1 sherd/6g)
A moderate amount (15%) of poorly-sorted, angular, calcined flint 4.0 mm or less across and a sparse to moderate amount of grog,
3.0 mm or less across, in a slightly sandy clay matrix; firing — oxidised; handmade; this may be a type of Silchester Ware.

Grog-Tempered Fabrics

G100 *Wheelthrown, sandy, grog-tempered fabric (9 sherds/93 g)*
A moderate amount (10–15%) of moderately poorly-sorted grog, measuring 3.0 mm or less across in a sandy clay matrix containing a moderate amount of subangular to sub-rounded quartz grains, 0.5 mm or less across; firing conditions — unoxidised or irregularly fired; harsh to touch; wheelthrown.

G101 *Handmade, coarse grog-tempered fabric (4 sherds/56 g)*
A common amount of poorly-sorted, crushed grog, measuring 4.0 mm or less across in a relatively unsandy, soft clay matrix; firing conditions — unoxidised or oxidised; handmade.

G102 *Wheelthrown, fine grog-tempered fabric (3 sherds/15 g)*
A common amount (20–25%) of well-sorted, crushed grog, measuring 2.0 mm or less, in an only slightly sandy clay matrix; the quartz sand is sparse in concentration (3–7%) but clearly visible, measuring 0.5 mm or less across; this fabric is similar to fabric type 35 identified at Riseley Farm, site A (Lobb and Morris, forthcoming); firing — oxidised exterior surface or interior surface; wheelthrown.

Sandy Fabrics

There are seven sandy fabrics amongst the collection of Roman pottery. These are described in detail below.

The grain-size terms are as follows: very coarse (2.5 mm or less), coarse (1.0 mm or less), medium (0.5 mm or less), fine (0.25 mm or less), and extremely fine (macroscopically invisible, 0.125 mm or less). Several of these fabrics may be products of the Alice Holt kilns (Lyne and Jeffries 1979).

Q100 *Fine-grained sandy grey ware (9 sherds/88 g)*
A moderate amount of fine, sub-rounded to rounded quartz grains, with a rare amount (1–2%) of mica; firing condition — unoxidised; wheelthrown.

Q101 *Medium-grained sandy grey ware (55 sherds/648 g)*
A moderate to common amount (15–20%) of subangular to sub-rounded, medium-sized quartz grains and a rare amount (1%) of coarse to very coarse grains in a slightly micaceous clay matrix which can contain a rare to sparse amount (1–3%) of soft, black inclusions which are likely to be iron oxides; one sherd had a single piece of angular flint, 3.0 mm across; harsh to touch and has a ringing sound when tapped; firing conditions — unoxidised; wheelthrown.

Q102 *Very coarse to coarse-grained sandy grey ware (21 sherds/150 g)*
A moderate amount (10–15%) of coarse-sized, sub-rounded to rounded quartz grains, with a sparse (3–5%) amount of very coarse rounded quartz grains in a clay matrix containing a sparse amount (5–7%) of soft black inclusions which are likely to be iron oxides; firing condition — unoxidised, or unoxidised core and partially oxidised surfaces; one example very thin-walled and oxidised; wheelthrown.

Q103 *Medium-grained, sandy orange ware (11 sherds/108 g)*
A common amount (20–30%) of medium-sized, sub-rounded to rounded quartz grains, with a rare amount (1–2%) of coarse quartz grains and a sparse (3–5%) amount of mica; firing condition — oxidised; wheelthrown.

Q104 *Imitation black-burnished ware (24 sherds/263 g)*
A common to abundant amount (25–40%) of very coarse to coarse-sized, sub-rounded to rounded quartz grains in an only slightly micaceous clay matrix; firing condition — unoxidised, exterior with sandwich-firing core, margins and interior surface or unoxidised; wheelthrown.

Q105 *Fine-grained sandy orange ware (1 sherd/9 g)*
A moderate to common amount (15–20%) of fine, sub-rounded to subangular quartz grains, with a rare (1%) amount of mica.
Q106 *Extremely fine-grained orange ware* (3 sherds/5 g)
A rare amount of medium-sized sub-rounded quartz grains and a sparse amount of red and black unidentified inclusions in a smooth, only slightly micaceous clay matrix.

The Forms
Only ten different rim forms and three base forms were identified amongst the Roman pottery.

R100 *Flat-topped, flanged jar*
Two examples; fabric Q102; wheelthrown; context 1, and ditch 302; date range: third century.

R101 *Oxfordshire red colour-coated ware Type C97 mortaria* (Young 1975, 133 and 173, figs 51 and 67)
Two examples; wheelthrown; context 1, and ditch 302; date range: 240–400+.

R102 *Hemispherical bowl*
one example; fabric Q105; may have been colour-coated; wheelthrown; context 1; date range: late third to fourth century AD.

R103 *Dropped-flanged bowl*
three examples; fabric Q101; wheelthrown; ditch 4; date range: third to fourth century AD.

R104 *Oxfordshire red colour-coated ware Type C45.6 shallow bowl* (Young 1975, 133, 158, fig 43 and 58)
One example; fabric E170; wheelthrown; ditch 4; date range: 270–400+.

R105 *Beaded, open shallow bowl*
one example; fabric Q104; probably wheelthrown; feature 66; date range: Roman.

R106 *Dog dish*
Three examples; fabrics Q100 and Q104; wheelthrown; ditch 302; date range: first to third century AD.

R107 *Everted rim jar*
Four examples; fabrics Q101, Q102 and Q104; wheelthrown; ditch 302; date range: second to third century AD.

R108 *Hammerhead or squared rim*
One example; fabric Q101; wheelthrown; ditch 302; date range: late third to fourth century AD.

R109 *Everted rim with long vertical neck*
One example; fabric Q102; wheelthrown; ditch 302; date range: third to fourth century AD.

R199 *Indeterminant rim form*
One example; fabric E300; context 1.

B100 *Flat base*
Ten examples; fabrics G100, G101, Q100, Q102, Q103, Q104; handmade and wheelthrown; context 1, and ditch 302.

B101 *Footring base*
Two examples; fabrics Q101 and Q103; wheelthrown; feature 64 and ditch 302.

B102 *Flanged base* one example; fabric Q104; wheelthrown; ditch 302.

Decorations
There are two decorated sherds amongst the Late Iron Age–Roman pottery, one body sherd from a flint-tempered, handmade vessel with burnished parallel, shallow grooves which is similar to one from Cowdery’s Down (Thompson 1983, fig 23, A2.6) and one wheelthrown, sandy grey ware sherd with a cordon on the vessel wall.

Summary
Several fabrics, two of the grog-tempered fabrics (G101 and G102) and the flint-tempered fabrics (F100 and F101), are typical of pre-Conquest material recovered at Silchester and Riseley Farm site A (Timby 1985; Lobb and Morris, forthcoming). The other wheelthrown grog-tempered fabric, all of the sandy fabrics and the established wares are likely to be post-Conquest types based on the rim forms identified. The pre-Conquest pottery is dissimilar to the fabric descriptions of the Late Iron Age–early Roman pottery recovered from Sites B/C and K at Brighton Hill South (Rees, forthcoming), with the exception of fabric 7 but with the absence of rim forms amongst the
Site X/Y pottery it is difficult to determine the precise dating of the material. Only six sherds of potentially pre-conquest material were identified, none of which was retrieved from reliably sealed contexts.

The range of forms amongst the larger collection of sandy wares is typical of the later Roman period and likely to date from the second to third century AD onwards. The Oxfordshire colour-coated pottery is dated to the late third to fourth century AD. The majority of this material was recovered from the upper fills of ditches 4 and 302 in trenches A and C respectively. The presence and relative predominance of the same sandy fabrics in these two features (Table 2) strongly suggest that the final infilling of these ditches occurred at the same time, no earlier than the end of the third century or early fourth century. This material is not dissimilar in date to the material recovered from period 3C activity at Cowdery’s Down (Thompson 1983) and phase III at Ructstalls Hill (Oliver and Applin 1979).

THE ANIMAL BONE
(Based on observations made by J Egerton and C Gamble of the Centre for Human Ecology and Palaeoeconomy, University of Southampton)

A collection of 34 bone fragments, from 9 contexts, was retrieved from the Romano-British features at Site X/Y. The quantities were too small to draw any detailed conclusions. However, in general the assemblage appeared to reflect the proportions and diversity of species noted in the Iron Age assemblages elsewhere at Brighton Hill South. A detailed report on the analysis of the animal bone is contained in the site archive.

DISCUSSION

The investigations in 1990 at site X/Y Brighton Hill South, have provided evidence which expands the period of settlement thus far observed in the Brighton Hill South development area. The pottery from the structure in trenches G and H is almost certainly earlier than any found on the previously excavated sites in this area and the finds from other features are evidence of the only clearly stratified, definite, Roman activity.

The early Iron Age phase would appear to be represented by a settlement, probably unenclosed and of unknown size. Most of the evidence for this phase occurred outside the initial area intended for excavation and consisted of part of a single circular building, although some of the undated pits and hollows from the eastern portions of trench A and trenches E and F may also belong to this phase. Indeed at least one feature (041 trench A) produced pottery of an almost identical date. Aside from its early date in relation to the other sites at Brighton Hill South, the pottery from the structure’s post-holes is of great interest due to its condition. Sherds of heat affected pottery were found in six of the post-holes. The results of the detailed study of two of these sherds by Dr Andrew Middleton suggests that this pottery was fired to a temperature of at least 1100° Centigrade and was probably subjected to these temperatures for up to an hour (see above). The occurrence of relatively large quantities of pot sherds within post-holes is unusual and the appearance within post-holes of these sherds of vitrified pottery, and the lack of evidence for post-pipes or charcoal from within the post-holes is indicative of clearance activity following the buildings destruction.

There are several possible explanations for this evidence. The structure could have been destroyed by fire, the pottery being vitrified as a result of being inside the structure at the time of this event. The pottery could then have found its way into the post-holes during the clearance of the site. It is also possible that the deposition of the distorted and blistered pottery in the post-holes of a former building was deliberate and could be interpreted as a symbolic act.

Symbolic activity is even more difficult to prove, but the ritual deposition of material in Iron Age features is now being argued as a more common occurrence than might previously have been recognised (Hill 1989). The possibility of a house fire being responsible for
the vitrification of the pottery, when there is so little corroborative evidence for such an event, does when initially considered seem unlikely, particularly as not all the pottery recovered was vitrified. Experimental work, however, has provided some clues as to the nature of this kind of incident. An experimental round house fire at Bromsgrove has shown that for a short period at the centre of this circular structure temperatures reached 1400° Centigrade. Such a temperature would be consistent with the level of vitrification noted on the pottery recovered. It also demonstrated that the fire had little effect on the daub walls or the timbers in the walls. After the experiment, both the daub and the timber from the walls were re-used in another structure (Dr P Reynolds, pers comm). Finally, the overfiring of pottery during manufacture cannot be totally discounted, but seems unlikely as open fires or bonfire kilns generally achieve insufficient temperatures to produce the noted effects.

The problem of the lack of burnt material other than pottery may be explained by a combination of conflagration and ritual behaviour; the burnt debris could have been cleared away before the removal of the undamaged building components. Fragments of the burnt pottery may have been deliberately collected during this, to be interred in the post-holes after the removal of the uprights. Alternatively, the non-ceramic artefacts may be seen as having been in two categories, reusable or totally destroyed. The possibility of ritual activity is not enhanced by the apparent lack of separation of vitrified from non-vitrified pottery (Table 3); the pottery assemblages of five of the post-holes having both categories of material within them. This indicates that pottery was heat-affected only in parts of the building during a conflagration, a hypothesis supported by the experimental data, the resultant material being cleaned away into the nearest post-hole irrespective of whether it was heat-affected or not. That the occurrence of both categories of pottery within post-holes is a result of debris clearance is tentatively supported by the grouping of post-holes containing only non-heat-affected sherd in the south-eastern portion of the double arc. These sherds might indicate the former presence of pottery vessels, or broken vessel fragments, close to the buildings walls, and therefore not vitrified, the remains of which were simply pushed into the nearest post-holes. Far too small a sample of post-holes was investigated, however, for statements made on material groupings to be valid statistically. Too little of the building and its environs has been excavated to encourage further speculation.

The only similar, reasonably local occurrence of an Early Iron Age building fire was in a building from the unpublished site at Longbridge Deverill, Wiltshire (Chadwick 1960). It is not possible to definitely claim the structure at site X/Y as part of a larger settlement, but it is worth noting that the high phosphate levels recorded in 1985 correspond with the location of this structure and extend slightly to the north. Unfortunately no phosphate readings were taken much farther to the north, nor were any taken farther to the east of the buildings location (Fasham and Keevill forthcoming). It is possible, therefore, that an area of Early Iron Age settlement was missed during the Brighton Hill South evaluation of 1984–86 and that as a result of subsequent development policies it has now been substantially destroyed.

The two dominant features of the activity during the Roman period are the ditches. These are probably all components of the enclosure complex observed on the aerial photographs. Although the correlation of the excavated features to the cropmarks was not exact (with the probable exception of ditch 004), the broad alignment of the linear features is similar suggesting northern and southern boundaries on a north-west/south-east alignment. The larger of the ditches produced a mixed assemblage including a small amount of late Iron Age/Early Roman pottery which may indicate a low level of activity over a considerable period of time. The results also indicate that at least part of the enclosure was double ditched. The near total absence of features which may represent structures and the comparatively small amount of finds for a
site of presumed Roman date, would suggest that this area was not being used intensively or for any long term settlement. At nearby Cowdery’s Down a similarly shaped but slightly smaller rectilinear enclosure was also only partially excavated and no obvious structural evidence was recovered, although, large quantities of pottery were found in the enclosure ditches which suggested domestic occupation to the authors (Millet and James 1983). At Brighton Hill South the paucity of both structural and artefactual evidence encourages the interpretation that the principal function of the enclosure was agricultural, with perhaps intermittent or very low levels of domestic activity. The date for this enclosure is not secure. Usage would appear to have ceased no earlier than the later Roman period with infilling of the enclosure ditches at the earliest in the late third–fourth centuries AD, but the dating for the origins of the enclosure are more obscure. The six sherds of immediate pre-conquest material found from the site perhaps relating to the period of the enclosure’s construction and initial use.

The excavations at site X/Y have clearly shown some of the problems associated with modern archaeological evaluations. Where work is targeted on the basis of aerial photographic evidence, important elements in the archaeological landscape can be overlooked. At Brighton Hill South whilst some of the cropmark areas relate to enclosure complexes associated with settlement, most of the other cropmarks are indicative of the sub-surface remains of field boundaries. The enclosure complex at site X/Y would appear to be a remnant of a rectilinear field system. Unenclosed areas of settlement, however, often leave no discernable trace on aerial photographs. Over reliance on aerial photographic evidence can lead to the investigation of the field systems at the expense of the settlements. In this case the existence of a possible settlement appears to have been detected by the analysis of phosphate concentrations in the topsoil.

During the Brighton Hill South Heritage Project it was proposed that this cropmark site should be preserved in its entirety. Unfortunately these proposals were not included within the final development plans, although the south-western part of the site has been preserved under open space and woodland screens.

ACKNOWLEDGEMENTS

The excavations and subsequent analysis were financed by Hampshire County Council and Basingstoke and Deane Borough Council. The assistance of Mclean Homes South-West Ltd, especially on site, is gratefully acknowledged. Thanks are also due to Dr Peter Reynolds for information provided. The project was managed by Dr Richard Newman and the work was directed in the field by Duncan Coe and supervised by Brian Matthews. The figures were drawn by Linda Coleman, Julian Cross and Serena Garrett. Helpful comments on the text were provided by Susan Davies and Dr Andrew Fitzpatrick. Dr Elaine Morris is grateful to Dr Andrew Middleton and Dr David Williams for their comments and assistance in the study of the pottery assemblage.

REFERENCES

Liddell, D M 1933 'Excavations at Meon Hill', *Proc Hampsh Field Club* 12, 127–162.

Lobb, S J, and Morris, E L forthcoming, 'Investigation of Bronze Age and Iron Age Features at Riseley Farm, Swallowfield, Berkshire', *Berkshire Archaeol J*.

Rye, O S 1981 *Pottery Technology* (Manuals on Archaeology 4), Taraxacum, Washington, DC.

Woods, A 1982 'Smoke gets in your eyes: patterns, variables and temperature measurement in open firings', *Bull Experimental Firing Group* 1, 11–25.

Authors: D Coe and R Newman, Wessex Archaeology, Portway House, Old Sarum Park, Salisbury SP4 6EB.

© Hampshire Field Club and Archaeological Society.