EXCAVATION OF EARLY SAXON SETTLEMENT AND MESOLITHIC ACTIVITY AT GOCH WAY, NEAR CHARLTON, ANDOVER

By JAMES WRIGHT

with contributions by R GALE, PHIL HARDING, PAT HINTON, LORRAINE MEPHAM, and PIPPA SMITH

ABSTRACT

A phased programme of archaeological investigation was undertaken by Wessex Archaeology at a site adjacent to Goch Way, near Charlton, Andover. A total area of c. 0.8ha was stripped of topsoil to reveal three Early Saxon sunken-featured buildings. In addition to pottery of 5th to 7th century AD date, artefacts recovered include spindle-whorls, glass beads, whetstones and part of a copper alloy bowl. Artefacts of Romano-British date were also retrieved during the course of the work.

Additionally, at least one pit of Late Neolithic date was recorded, and over 400 pieces of worked flint of later Mesolithic date were collected from naturally deposited aeolian silts.

INTRODUCTION AND ARCHAEOLOGICAL BACKGROUND

A phased programme of archaeological investigation was carried out at land adjacent to Goch Way, near Charlton, Andover, centred on NGR 435600 146820 (Fig. 1). The work was undertaken in connection with proposed development work.

The site lies on the northern periphery of Andover and just to the south-east of the village of Charlton. It forms the southern tip of a block of development land that had been identified in the Hampshire County Development Plan (1955) as Andover Area 6. The rest of Area 6 was recently taken up by the residential development known as Saxon Fields and, although the current area had initially been proposed for use as an employment park, it too has now been subject to residential development.

Basal geology within the site area comprises Upper Chalk overlain with shallow deposits of river and valley flint gravel of Pleistocene or possibly early Holocene date. The site lies at 64–69m above Ordnance Datum and slopes down gently to the south and south-east into the head of the Anton valley. The gravels in the base of the valley have been extensively quarried, leaving a number of small lakes.

Archaeological investigations undertaken in connection with the previous residential development of land immediately to the north of the site identified two separate settlements of Middle-Late Iron Age date, along with further evidence for activity in the Mesolithic, Neolithic, Early Bronze Age, Roman and Saxon periods (Grove, in prep). Less than 1 km to the south-west of the site, across the river, is the Iron Age enclosed settlement of Old Down Farm (Davies 1980; 1981). Excavation here found also features of Neolithic, Roman and Saxon date, including a group of six Saxon sunken-featured buildings located within the enclosure.

The Roman road from Sorviodunum (Old Sarum) to Calleva Atrebatum (Silchester), known as the Portway, passes just to the south of the present site, although any trace of the road here has been removed by gravel extraction. An assemblage of more than 1500 sherds of Saxon pottery and other artefacts was recovered during the construction of Goch Way, then known as Charlton Link Road (Dacre and Warmington 1977). The village of Charlton is noted for a concentration of Saxon occupation evidence, and a variety of features and artefacts attributable to this period is known.

ARCHAEOLOGICAL FIELDWORK

An initial trial trench evaluation of the site found limited evidence of archaeological activity, pre-
Fig. 1 Site and feature location plan
dominantly comprising a small pit of Late Bronze Age date and a few sherds of Beaker pottery associated with a possible chalk surface above the gravel. Shallow hollows filled with reworked loessic material were found in a number of places, and these contained small quantities of worked flint of Mesolithic and Neolithic date along with pottery ranging in date from Beaker through to Saxon (Wessex Archaeology 1997).

In February 1998 the route of a proposed access road within the site was stripped of topsoil under archaeological supervision (Fig. 1, Phase 2). A single sunken-featured building (SFB) of Saxon date and a number of other undated features were identified and excavated. This area of investigation was extended in June 1999 (Fig. 1, Phase 3), giving a total excavation area of c. 0.8 hectares.

Sunken-featured buildings

Three SFBs were examined (Figs 2, 3). SFB 104 was sub-rectangular in plan and aligned east-north-east/west-south-west, measuring 3.90m by 3.20m and c. 0.4m deep. The sides were steep and the base of the building was reasonably flat. At each end of the major longitudinal axis was a small posthole (118; 120).

The lowest fill (103) of this building con-
Fig. 3 Plans and sections of SFBs 1003 and 1008

Key:
- ◊ Environmental sample taken

- 1003
- 1008
- 1011
- 1024
- 1025
- 1032
- 1034
- 1037 (projected onto section)
- 1038
- 1039
- 1040
- 65.50mOD
- 66.30mOD
- 67.60mOD
tained 41 sherds of Early Saxon pottery and one sherd of probable Late Iron Age date, along with a late Roman coin, two glass beads (one of which is of late 6th–7th century AD date), a bone pin and a fragment of a ceramic spindlewhorl. Another ceramic spindlewhorl was recovered from posthole 118. In the western part of the building, the basal fill was sealed by a layer of orange-brown silty clay (102) which may represent the collapse of external bank material into the building. This deposit also contained another coin of late Roman date, along with 33 sherds of Early Saxon pottery and one of Late Iron Age date.

The overlying deposit (101) contained quantities of charcoal, burnt flint and featureless fragments of fired clay, and may have derived in part from an episode of burning. An iron knife, a bone pin and two iron nails were also recovered from this deposit, along with a quantity of pottery predominantly of Early Saxon date but also including one sherd of Late Bronze Age date and two of Iron Age date. The upper fill of the building (100) was similar to 101 although slightly paler in colour. It contained an iron nail and a fragment of ceramic spindlewhorl that joined with the piece recovered from the lowest fill 103. Again a quantity of Early Saxon pottery (24 sherds) was recovered along with two Iron Age sherds.

SFB 1003 (Fig. 3) was also sub-rectangular in plan, measuring 2.90m by 2.30m and c. 0.25m deep. This example was aligned north-east/south-west and two postholes (1011; 1024) were located slightly off the central axis. The lowest fill of the building (100) comprised up to 0.03m of small gravel and pea grit, and contained no artefacts. Overlying this was 1004, a dark grey clay with few stones that contained a fragment from the edge of a copper alloy bowl and also a small piece of copper alloy strip. Other finds from this deposit included 28 sherds of Early Saxon pottery, one sherd of Roman pottery, one sherd of Iron Age pottery, an iron nail and a fragment of whetstone made from micaceous sandstone.

The uppermost deposit (1004) was similar in texture and colour but contained more flint gravel. The pottery recovered from this fill was predominantly of Early Saxon date (32 sherds) but included four sherds of Iron Age date and two of Roman date.

Posthole 1011 had a very slight overhang on the southern edge, suggesting the post had leaned to the north. Most of the gravel inclusions of posthole fill 1012 were lining the base and northern edge of the cut, possibly as packing. Two large sherds of Early Saxon pottery and a piece of copper alloy strip were retrieved from this fill. Posthole 1024 undercut the geological deposits on its northern side, perhaps indicating that the post leaned to the south.

SFB 1008 (Fig. 3) was more rectangular than the other two buildings and was aligned west-north-west/east-south-east. It measured 3.80m by 2.40m and was c. 0.14m deep. Four postholes were located within this building; one at each end of the longitudinal axis (1037; 1040), and two others centrally placed and adjacent to this axis (1038; 1039). Two internal deposits (1009; 1045) were identified and these filled the SFB and all of the postholes. Fill 1045 was only present along the southern edge of the building and it contained no artefacts. Above this deposit 1009 contained 46 sherds of Early Saxon pottery (including a fragment from a bowl with a lug handle) along with six sherds of Iron Age pottery, the base of a late Roman ceramic candlestick and four iron nails.

Other features

Two small pits were found within the excavation area. Pit 1006 was bowl-shaped and was 0.77m in diameter and 0.25m deep. The single fill (1007) contained 19 sherds of Late Neolithic Grooved Ware pottery, along with 17 pieces of struck flint and a small amount of burnt flint. Pit 108 was circular and measured 0.75m in diameter with a depth of 0.30m. A quantity of burnt unworked flint fragments was recovered from this feature but no dateable material was noted.

Two small probable postholes (110; 112) were examined, along with a further possible example (114). Posthole 110 contained a few pieces of burnt flint along with some fragments of featureless fired clay. The possible posthole (114) contained a single piece of worked flint, and the single fill (113) was quite rich in visible charcoal.
The aeolian silts

In the southern part of the excavation area patches of greyish-brown silty loam, probably of aeolian derivation, infilled shallow hollows in the surface of the underlying gravel. Following topsoil stripping and a period of weathering, it was noted that considerable quantities of worked flint (and some burnt flint) were present at the surface of these wind-blown deposits.

The worked flint was collected from the surface of the site and recorded as context 1041. The location of each piece of worked flint was recorded by Total Station Theodolite (TST). In the southern part of the site, a test pit measuring 0.6m by 0.6m was excavated into one of the deeper patches of Aeolian silt. Three 50mm deep spits were dug through the silts and whole earth bulk soil samples of 30 litres were recovered from each spit. These were recorded from upper to lower as contexts 1042, 1043 and 1044. The samples were processed for the recovery of lithic material.

A large assemblage of worked flint of Mesolithic date was recovered from the test pit and also from the surface collection. The analysis of the material from the test pit indicated some vertical post-depositional movement of the flints, probably due to biological activity.

FINDS by Lorraine Mepham

This relatively small artefactual assemblage has nevertheless provided useful evidence from a small group of settlement features. The pottery, metalwork and glass beads date the settlement to the 6th or early 7th centuries AD, i.e. broadly contemporary with the nearby cemetery at Portway (Cook and Dacre 1985) and the settlement site at Old Down Farm (Davies 1980).

Of particular interest is the presence of Romano-British artefacts (coins, spoon and fineware pottery) which may have been deliberately collected by the Saxon inhabitants, and a Saxon bowl of a type more commonly found in funerary rather than settlement contexts. Apart from these, the assemblage includes a range of artefact types (personal items, textile production equipment and coarseware pottery) which is characteristic of settlement sites of this period in southern England.

Metalwork

The metalwork comprises two copper alloy coins, six other copper alloy objects and 11 iron objects. The two coins, both recovered from SFB 104, are Roman issues and date to the late 3rd century AD. One is a copy of a Divo Claudio type, issued sometime between AD 270 and 286. The second coin is also a radiate of the late 3rd century AD, this time a regular issue, probably of one of the Gallic Emperors, possibly Victorinus (AD 268-70). Given their provenance these two coins could have been deliberately collected by the inhabitants.

The other copper alloy objects comprise a fragment from a Romano-British spoon (unstratified, Fig. 4, 1), a fragment from the rim of a bowl with beaded decoration (context 1015, Fig. 4, 2), a twisted, folded strip fragment of uncertain function, two narrow, tapering strips, and a tiny triangular fragment with two rivet holes. All were from SFB 1003, apart from the spoon and the triangular fragment, which were found unstratified. The presence of the bowl rim is significant here as such vessels are by no means common, and are generally grave finds, for example in the Dover Buckland cemetery (Evison 1987, fig. 13, no. 17).

The iron objects consist mainly of nails or shanks assumed to be from nails, all found within the SFBs. One knife blade was recovered from SFB 104; although worn and corroded (context 101, Fig. 4, 3) this appears to be of Evison's type 1 (1987, text fig. 22), the most numerous and long-lived type at the Dover Buckland cemetery and dated on continental parallels to AD 450–700.

Pottery

The pottery assemblage is mainly of Early Saxon date, with a small amount of prehistoric and Roman material, mainly residual. The later prehistoric pottery (26 sherds), which comprises Early/Middle Iron Age flint-tempered wares, is not discussed further here.

Pit 1006 produced 19 very abraded sherds in
grog-tempered fabrics, which represent parts of a minimum of three Grooved Ware vessels, all of Durrington Walls style. The most complete profile (Fig. 5, 1) is of a gently convex vessel with an internally bevelled rim and impressed and incised decoration – fingernail impressions around the outside of the rim, and ?incised cross-hatching below. A second vessel is represented by a single sherd, with raised, impressed vertical and horizontal cordons (Fig. 5, 2), while a fingernail impressed rim sherd (Fig. 5, 3) could derive from a third vessel, or could possibly belong to vessel 1.

The four Roman sherds comprise two small oxidised sherds, one of late Roman Oxfordshire colour coated ware, and the base of a late Roman parchment ware candlestick from the New Forest production centre (Fulford 2000, type 96). The colour coated ware and the candlestick came from the fills of SFBS 1003 and 1008 respectively; in these contexts, it is possible that such sherds had been deliberately collected by the Saxon inhabitants, since this 'magpie tendency' is well attested on other Saxon sites (eg. Plouviez 1985).

The rest of the assemblage (290 sherds) is in fabrics characteristic of the Early Saxon period, which fall into three groups: organic-tempered, sand-gritted and flint-gritted (Table 1). Nine separate fabric types have been defined, and are
described below, although given the similarity in the range of inclusions within the organic-tempered fabrics and sandy fabric Q400, it is likely that these three fabrics at least represent arbitrary divisions of one fabric with a wide range of variation. Similarly, fabrics Q401 and Q404 may be variants of a single type. This pattern is to be expected of an assemblage resulting from domestic pottery production on a small scale, in which the fabric 'recipe' will vary between episodes of potting.

Fabrics

V400 Moderately fine matrix containing common, poorly sorted organic inclusions; rare rounded quartz grains <0.25 mm.

Q400 As V400 but containing sparse to moderate rounded quartz and rare flint gravel.

Q401 Moderately fine matrix, containing common, fairly well sorted, subangular quartz grains (some polycrystalline) <0.5 mm; rare organic inclusions; rare mica.

Q402 Moderately fine matrix, containing sparse, poorly sorted, subrounded quartz (heavily iron-stained) <1 mm; rare mica.

Q403 Moderately coarse matrix, containing common, well sorted, subangular/subrounded quartz <0.25 mm; sparse iron oxides; rare mica.
Fig. 6 Saxon pottery

1. Jar/bowl (type 1); fabric V401. PRN (Pottery Record Number) 54, context 1004, SFB 1003.
2. Jar/bowl (type 1); burnished; fabric Q401. PRN 101, context 1034, SFB 1003.
3. Jar (type 2); burnished; fabric Q401. PRN 5, context 100, SFB 104.
4. Bowl (type 3); burnished; fabric Q402. PRN 51, context 1004, SFB 1003.
5. Bowl (type 3); burnished; fabric Q401. PRN 56, context 1034, SFB 1003.
6. Bowl with lug handle (type 4); fabric Q403. PRN 62, context 1009, SFB 1008.
Q404 Moderately coarse matrix, containing abundant, fairly well sorted, subangular quartz <0.5 mm.

F400 Moderately coarse matrix, containing sparse, poorly sorted, subangular flint <2 mm; rare to sparse, subrounded quartz 0.25 mm; rare to sparse iron oxides; rare organic inclusions and mica.

F401 Moderately coarse matrix, containing moderate to common, fairly well sorted, subangular flint <2mm; sparse, subrounded quartz <0.25 mm; rare iron oxides.

All fabrics exhibit the variations in colouring consistent with bonfire firing. While there is nothing here to indicate anything other than local production, the variation in the quartz inclusions suggests that more than one clay source was exploited.

Diagnostic sherds are limited to a handful of rims, deriving from bowls or jars in unstandardised forms. These fall into four types:

1. convex or rounded forms (jar or bowl) with neck constriction and everted rim (nine examples; Fig. 6, 1, 2)
2. rounded jar with inturned, plain rim (one example; Fig. 6, 3)
3. convex bowls with plain rims (two examples; Fig. 6, 4-5)
4. bowl with rim drawn up into lug handle (one example: Fig. 6, 6)

Decoration is extremely rare; three sherds have horizontal tooled lines and 34 sherds are burnished.

Comparable assemblages within the Andover area include Old Down Farm (Davies 1980) and Charlton Link Road (Cook and Seager Smith n.d.), both of which produced a similar range of fabrics and vessel forms, albeit including a higher proportion of decorated vessels. The Portway cemetery also provides parallels, although containing a much higher proportion of organic-tempered vessels (Cook and Dacre 1985, 104); the identifiable vessel forms (mostly cremation urns) are almost exclusively jars. All three assemblages have been dated to the 6th century, on the basis of the absence of characteristically 5th century forms (or other finds), and parallels with Portchester, Hampshire (Cunliffe 1976). A similar date can be suggested for the Goch Way assemblage, although a date range extending into the 7th century cannot be ruled out given the associated datable artefacts.

Most of the pottery (283 sherds) derived from the three SFBs. There is variation between these three structures in terms of fabric types, vessel forms, decoration and surface treatment. Buildings 1003 and 1008 are closest in terms of fabric proportions; these two features also produced the only decorated sherds, a higher proportion of burnished sherds, and the only examples of open vessel forms (types 3 and 4). This variation could have a chronological or a functional explanation, but the overall sample size is too small to draw any conclusions.

Ceramic Building Material and Fired Clay
Ceramic building material was recovered from four contexts. One fragment (from a modern feature) is too small to be diagnostic and could be post-medieval, but the other seven fragments (all from SFBs) are of Romano-British type.

The fired clay includes two spindlewhorls; one from SFB 104 and one from posthole 118 of this building (context 117, Fig. 7, 3). The remainder comprises featureless and abraded fragments, probably structural in origin, most of which came from SFB 104.

Glass
Two glass beads were recovered from SFB 104, a large biconical bead (ground colour uncertain as the glass has degraded) with marvered decoration comprising intersecting arcs and spots (Context 103, Fig. 7, 1), and a small opaque yellow annular bead (Context 101, Fig. 7, 2). Of the two, the decorated bead is the more closely datable, and is of a type dated to the late 6th or 7th centuries AD; similar examples are known from the Portway cemetery (Cook and Dacre 1985, 82-3).

Stone
The four pieces of stone comprise two whetstones (surface finds) and two flattish slabs, both in sand-
stone, one very well finished, which could be building material (SFBs 1003 and 1008 respectively).

Worked bone

Two worked bone pins were recovered, both from SFB 104 (contexts 101, 103, Fig. 7, 4-5).

Animal bone by Pippa Smith

Only 120 fragments of animal bone were recovered from the three SFBs on site. Many of the bones had been very badly weathered and it is likely that these represent secondary deposition within the features.

SFB 104 yielded the largest group of bone (75 fragments) and the bones from this building were in reasonable condition with less weathering than was evident on bones from the other two. Cattle, sheep or goat, pig, horse, bird and rabbit were all represented. The presence of rabbit in SFB 104 suggests later disturbance as rabbit is not native to this country and was introduced by the Normans. The bones probably come from one individual and this may be an isolated case of later burrowing. Little can be said about the economy from such a small group of bones.

SFB 1003 yielded only 30 bones, many in poor condition, and it is likely that they had been left exposed for some time before incorporation into the fill of the feature. Similarly the 25 bones from SFB 1008 are in extremely poor condition and can contribute little to our understanding of the site.

The only identifiable bones to survive within SFBs 104 and 1008 were teeth, antler and one long bone. This pattern is indicative of an assemblage which has suffered much post-depositional damage as teeth will survive where all other bones have been destroyed by, for example, weathering or poor soil conditions. This animal bone group is likely to be a very small sample of that which was originally deposited.

Flint by Phil Harding

The largest component of flint recovered comprised a spread of Mesolithic material from the upper surface of the aeolian deposits in the south of the site. Worked flint was also found in the Late Neolithic pit 1006 and as residual material in the three Saxon SFBs. Most of the material from the excavated contexts was unpatinated and could not be used to provide any indication of date.

Mesolithic

The spread of Mesolithic material lay at the south end of the site within patches of residual aeolian silts overlying the basal gravel. It extended beyond the stripped area towards the river valley. Excavation was limited to retrieval of whole earth bulk samples in 50mm spits within a single test pit. These samples were sieved through 1mm mesh to maximise recovery of microliths, microburins and debitage chips.

The results for the sampling show that 168 pieces of worked flint, including 44 chips, were recovered from the test pit. Most of the assemblage was retained within the upper spit, with a proportional decrease in frequency in the lower spits. This indicates that the flint has undergone some vertical post-depositional movement within the aeolian silts, although it is probable that there may have been little or no horizontal movement. It is uncertain whether the surface of the aeolian silts had been truncated by ploughing. The assemblage from the excavated test pit appears to be largely uncontaminated by later Neolithic and Bronze Age flintwork.

The worked flint assemblage from the test pit includes material from all phases of blade/let production and tool manufacture including blade/let cores, crested pieces, microburins and microliths. The Mesolithic knappers had access to large nodules of good quality flint for core manufacture, which were prepared on flakes and nodules. These include single platform pieces and others with opposed platforms. Blade/let production was undertaken using soft hammers and striking platforms were prepared using platform abrasion to strengthen the edge before the blank was removed.

The retouched tools collected from the surface of the aeolian silts include nine end scrapers of which one is made on a blade, one on the proximal end of a flake, five are end scrapers on
flakes and there is a broken example. These pieces are well made with regular direct retouch forming a convex scraping edge. The microlith component includes two obliquely blunted points, an unfinished obliquely blunted point and a bladelet backed along both edges. There are also two blades with oblique truncations, a broken backed blade and a naturally backed blade with edge retouch. The aeolian silts also produced a core tool, 96mm long, with a plano-convex cross section, which may be a small unstruck tranchet axe. It should be noted that the selective method of collection would lead to the recovery of only the more obvious and larger elements of the full lithic assemblage.

Late Neolithic
Waste flakes, a core and two end scrapers made on flakes were found in pit 1006 along with fragments of Late Neolithic pottery. The material is unpatinated and in mint condition; it may include redeposited Mesolithic blades. The flakes are predominantly hard hammer struck and show no signs of platform preparation. The core is a multi-
platform flake core with steeply developed flaking angles that caused its rejection. The two end scrapers are made on thick, poorly prepared flakes with regular direct retouch at the distal end. There is also a broken flake with retouch at the proximal end.

Sunken-featured buildings
Quantities of residual Mesolithic flakes and blades were found in all three Saxon SFBs. The largest quantity of material was found in SFB 104 although SFB 1008 also contained a significant quantity of material. These structures are to the north of the principal concentrations of Mesolithic flintwork but both contained blades and bladelets and a crested blade that are undoubtedly residual Mesolithic artefacts. SFB 1003, which lay within the main area of Mesolithic material, contained the least quantity of worked flint.

Unstratified
An Early Bronze Age barbed and tanged arrowhead of Green’s Sutton C (1980) was found in the baulk of the excavation area.

ENVIRONMENTAL ANALYSES
Charred Plant Remains by Pat Hinton
Twenty-five samples were taken and processed by standard flotation methods (flot retained on 0.5mm and residues at 1mm). Six were selected for full analysis, the residues were fully sorted by Wessex Archaeology and the flots were sorted by the writer using a stereo microscope at x7-40 magnification, with higher magnification used when necessary. All taxa are represented in Table 2 by seeds, a term that includes achenes, caryopses etc., except where otherwise noted. Nomenclature is that of Stace (1997).

All of the samples included a number of uncharred and obviously recent seeds and root fragments, thereby indicating disturbance and the possibility of intrusion from other contexts. The condition of the charred remains is varied. Few items are well-preserved and readily identifiable, some are distorted, others incomplete or reduced to fragments. Small pieces of charred material with a characteristic open structure are probably fragmentary cereal remains but, particularly in one Saxon context, there are pieces of vesicular material with larger vacuoles, some obviously associated with fruit stones.

Late Neolithic
Apart from a few possible cereal fragments, the charred remains from the upper part of pit 1006 (sample 18) are scrub or woodland in origin. Fragments of hazel (Corylus avellana) nut shells are the most numerous (0.3gm), the equivalent probably of four to five nuts. An endocarp (fruit stone) of 5.5mm by 3.5mm, which split into two halves on examination, was identified by comparison with cleanly broken (by finches?) half stones of hawthorn (Crataegus monogyna). Having split, the two charred halves (which contained a small shrivelled fragment, presumably the remains of the seed), enabled the thickness of the endocarp to be measured as 0.4–1.0mm. One smaller fragment of a fruit stone may possibly be sloe (Prunus spinosa).

The lower part of the fill of this pit (sample 19) contained c. 250 small hazel nut fragments (2.4gm), estimated by eye to represent the shells of about 40 nuts. The sample also contained one well-preserved small grain of free-threshing wheat (Triticum cf aestivum), typical of compactum form. There are a few small charred fragments but these may not be of cereals. Two dock seeds (Rumex sp.) are the only ‘weed’ seeds from this pit. The few fragments from this pit indicate little except the possible availability of cereals, while the hazel nuts, hawthorn and probable sloe suggest the exploitation of scrub or wood margins. This would not be surprising from an early prehistoric pit but the presence of one free-threshing bread wheat grain is not typical. These results however should be compared with the wheat, hazel and fruits from the Saxon SFB 1003 (see below) in view of the possibility of contamination suggested by the modern uncharred roots and seeds in all samples.

Early Saxon
Three of the four samples from the Early Saxon features include only small numbers of cereal grains and very few wild plant seeds but the upper
Table 2 Charred plant remains

<table>
<thead>
<tr>
<th>Feature</th>
<th>Late Neolithic</th>
<th>Saxon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pt 1006</td>
<td>SFB 1003</td>
</tr>
<tr>
<td>Context</td>
<td>1007</td>
<td>1004</td>
</tr>
<tr>
<td>Sample</td>
<td>18 19</td>
<td>9 11</td>
</tr>
<tr>
<td>Sample volume (litres)</td>
<td>10 10</td>
<td>10 10</td>
</tr>
<tr>
<td>Cereals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triticum cf aestivum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf Triticum sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hordeum vulgare L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerealia indet. - grains -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arable/ruderal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf Papaver sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chenopodium album L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chenopodium sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atriplex sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stellaria media/neglecta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persicaria lapathifolia (L.) Gray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fallopia convolvulus (L.) Løve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rumex sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polygonumaceae indet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifolium/Medicago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galium sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tripleurospermum inodorum (L.) Sc.Bip.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromus sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poaceae indet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woodland/scrub</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corylus avellana L. - nut shell fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunus cf cerasus davium - fruit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunus sp. - pericarp frags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- endocarp frags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crataegus monogyna Jacq.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- endocarp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidentified fragments: - cereal or fruit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>seeds</td>
<td></td>
<td>0.3gm</td>
</tr>
<tr>
<td>cf tuber</td>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>

fill 1004 of SFB 1003 is more informative (Table 2). Cereals are mainly hulled barley (Hordeum vulgare) and at least two show the slight axial twist indicating lateral florets of six-row barley. There is only one safely identified grain of free-threshing wheat and one other probable wheat. There are, however, further charred fragments, some probably cereal in origin. The sample includes a
range of wild plant seeds, all of which could be crop weeds.

In addition to the cereals and other seeds the sample contained further evidence of woodland or hedgerow resources in the form of about 60 hazel nut fragments (0.9gm) and several fruits. There is one almost complete \textit{Prunus} fruit, measuring 8.8mm by \textasciitilde 8.0mm, and where about half of the strongly vacuolated pericarp is missing, the endocarp is exposed. The surface appears to be smooth which suggests wild cherries (\textit{Prunus avium} or \textit{cerasus}). There are also seven fragments of \textit{Prunus} sp pericarp, similarly vacuolated, which in each case show part of the concave inner surface of a fruit stone. There are two matching halves of a fruit stone of 6.0mm \times 5.5mm which are particularly clean and glassy with no signs of abrasion. The outer surfaces are finely wrinkled, suggesting an unripe fruit where the fleshy mesocarp is undeveloped, or possibly a wizened fruit such as occasionally remain on the tree throughout winter. Ten smaller fragments of fruit stones where the outer surfaces resemble that of sloes were present, and several unidentified seeds and probable seed fragments.

A further charred item from this sample is 9.4mm in length, curved, with slight irregular ridges. It is more or less circular in section, less than 1.0mm in diameter at the narrower end and up to 3.0mm at the widest part near the tip. Although somewhat resembling a root tuber it has not been matched with any botanical specimen and its dense, possibly crystalline, structure suggests a mineral origin (Sarah Mason, pers comm).

A sample from the lower fill (1034) of this SFB includes a smaller number of poorly preserved cereals and other seeds, and fewer hazel nut fragments (0.2gm). Samples from the two other SFBs contained even fewer cereals and seeds with only a small trace of hazel in one (SFB 104, fill 101) and none in SFB 1008. Cereals in all four Early Saxon samples are fragmentary, and there are no chaff remains.

The cereals, weeds, nut shells and fruit from SFB 1003 suggest the disposal of domestic refuse, including waste from later stages of cereal preparation, and the fewer remains from the other two SFBs suggest at least a scatter of similar refuse. Comparing the cereals from the Saxon contexts with results from other sites in the vicinity, the apparent majority of barley at this site is matched by the large amount of barley and oats but only two grains of bread wheat from the Saxon phase at the adjacent site of Enham Lane (Hinton in prep). However, samples from Chantry Street in the centre of the town produced mainly wheat (Green 1991), and elsewhere in Wessex much larger assemblages from Winchester and Hamwic included predominantly wheat. Urban sites may well include cereals imported from several producers beyond the town and ratios may not be comparable to those from rural sites where barley has more frequently been the major cereal (Green 1994). Hulled 6-row barley and naked wheat were recorded from SFBs at Collingbourne Ducis north-west of Andover (Letts 2001), but poor preservation restricted identification at that site and totals are uncertain.

The Goch Way and Enham Lane sites are rural and in an area of agricultural activity where crops were grown and at least partly processed. The chalk downland around Andover may well have been suitable for growing barley although conditions appropriate for wheat must also have been available. The weed seeds from this site do not indicate any particular soil conditions.

Charred fruit stones, especially of sloes and plums, are frequently found but charred fragments of the soft fruit parts are unusual. The remains from this site, which indicate fruits of varying size, are likely to represent wild or semi-domesticated cherries, sloes or small plums from nearby hedgerow or scrub. It is probable that the stones seen in the fragment of charred fruit were broken as a result of the charring, rather than beforehand. There is no sign of gnawing by rodents, however greenfinches and hawfinches will split stones to eat the kernels but not the surrounding fleshy part (Bang and Dahlstrom 1980). Clean, bright surfaces on a few stone fragments presumably indicate recent fracture.

The plant remains from this site add a few details towards an understanding of Early Saxon farming economy in this part of southern England but SFBs often provide only small amounts of plant remains. Recent results from
Table 3 Charcoal

<table>
<thead>
<tr>
<th>Feature</th>
<th>Context</th>
<th>Acer</th>
<th>Corylus</th>
<th>Fraxinus</th>
<th>Pomoideae</th>
<th>Prunus</th>
<th>Quercus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late Neolithic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pit 1006</td>
<td>1007</td>
<td>-</td>
<td>44</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>15, 3s</td>
</tr>
<tr>
<td>Early Saxon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFB 1003</td>
<td>1034</td>
<td>8</td>
<td>-</td>
<td>14</td>
<td>-</td>
<td>4h, 1s</td>
<td></td>
</tr>
<tr>
<td>SFB 104</td>
<td>101</td>
<td>3</td>
<td>2</td>
<td>18</td>
<td>4</td>
<td>4h, 1s</td>
<td></td>
</tr>
</tbody>
</table>

Key: h = heartwood; s = sapwood. The number of fragments identified is indicated.

Charcoal was recovered in varying amounts from the flotation of 21 bulk soil samples (see above) taken from the Late Neolithic pit 1006 and the three Early Saxon SFBs. Three samples were selected for detailed analysis to provide environmental and economic data from pit 1006 and the SFBs 104 and 1003. The results are comparable to those from features of similar date from the nearby site at Enham Lane (Gale in prep).

The bulk soil samples were processed by flotation and sieving using 1 mm and 500 micron meshes. The resulting floats and residues were scanned under low magnification and the charcoal separated from plant macrofossils. Charcoal fragments measuring >2mm in cross-section were considered for species identification.

The charcoal was firm and fairly well-preserved. It consisted of fragments measuring up to 10mm in radial cross-section but was too fragmented to include intact radial segments of roundwood. Fragments from each sample were fractured to expose fresh transverse surfaces (TS) and sorted into groups based on the anatomical features observed using a ×20 hand lens. Apart from the alder/hazel group (from which every fragment was examined at high magnification), representative fragments from each group were selected for detailed study at high magnification and additional surfaces to show the wood structure in the tangential (TLS) and radial planes (RLS) were prepared. The fragments were supported in washed sand and examined using a Nikon Labophot-2 microscope at magnifications of up to ×400. The anatomical structures were matched to prepared reference slides.

The results of the charcoal analysis are summarised in Table 3 and discussed below. The anatomical differences between related genera are sometimes too slight to allow secure identification to genus level, and in these instances group names are given. This includes members of the Pomoideae (Crataegus, Malus, Pyrus and Sorbus). Where a genus is represented by a single species in the British flora it is named as the most likely origin of the wood, given the provenance and period, but it should be noted that it is rarely possible to name individual species from wood features, and exotic species of trees and shrubs were introduced to Britain from an early period (Godwin 1956; Mitchell 1974). Classification follows that of Flora Europaea (Tutin, Heywood et al. 1964–80).

The anatomical structure of the charcoal was consistent with the taxa or groups of taxa named in the following list:

- **Aceraceae.** *Acer campestre* L., field maple
- **Corylaceae.** *Corylus avellana* L., hazel
Fagaceae. *Quercus* spp., oak
Oleaceae. *Fraxinus excelsior* L., ash
Rosaceae. Subfamilies:
Pomoideae which includes *Crataegus* spp., hawthorn; *Malus* sp., apple; *Prunus* sp., pear; *Sorbus* spp., rowan, service tree and whitebeam. These taxa are anatomically similar; one or more taxa may be represented in the charcoal.
Prunoideae which includes *P. avium* (L.) L., cherry or gean; *P. padus* L., bird cherry, and *P. spinosa* L., blackthorn. In this instance the homocellular rays suggest *P. avium* as the more likely.

Late Neolithic
Charcoal occurred throughout the fill of pit 1006 but was more concentrated towards the base. A large number of charred hazel nut shells was also present. The charcoal included hazel (*Corylus avellana*), a member of the hawthorn/*Sorbus* group (Pomoideae) and oak (*Quercus* sp.).

Early Saxon
Charcoal and charred hazel nutshells were common throughout the fills of SFB 1003. Oak (*Quercus* sp.), a member of the hawthorn/*Sorbus* group (Pomoideae) and hazel (*Corylus avellana*) were identified from the north-western part of the lower fill.
Charcoal occurred more or less across the whole floor area of SFB 104 but was not present in the fills of the postholes; an origin from fuel residues seems likely. Charcoal was slightly denser in the north-eastern part of the structure, where hazel nutshells also occurred. The range of taxa identified from context 101 (north-east quadrant), included a member of the hawthorn/*Sorbus* group (Pomoideae), oak (*Quercus* sp.), ash (*Fraxinus excelsior*), hazel (*Corylus avellana*), maple (*Acer campestre*), and *Prunus* sp., probably cherry.

Discussion
The origin of the charcoal in Late Neolithic pit 1006 is unknown; associated finds included worked flint and pottery sherds. It is probable (although unproven) that the pit was the receptor for discarded fuel debris. Evidence from the two Early Saxon structures was more conclusive, however. Associated finds here were of a domestic nature and included glass beads, coins, spindlewhorls, and charred grain. The charcoal strewn around the floor areas can almost certainly be attributed to domestic fuel debris.

The taxa identified from the Late Neolithic pit reflects those from the Early Saxon features and included oak (*Quercus* sp.), a member of the hawthorn/*Sorbus* group (Pomoideae), and hazel (*Corylus avellana*). Similar taxa were identified from deposits in SFB 104 with the addition of ash (*Fraxinus excelsior*), maple (*Acer campestre*) and *Prunus* sp. (probably cherry). The range of species identified is characteristic of the local soils and grow in the region today, forming blocks of deciduous woodland with shrubby species in woodland margin, hedges and scrubland. Some hazel, at least, must have grown in open sunlight in order to produce the nuts that occurred frequently in features from both the Late Neolithic and Early Saxon periods.

The environmental evidence from charcoal deposits at Goch Way correlates closely with that from the adjacent site at Enham Lane (Gale in prep) and it is probable that fuel was gathered from common ground. The apparent non-use of wetland species such as willow (*Salix* sp.), alder (*Alnus glutinosa*) and poplar (*Populus* sp.) is consistent for both sites, despite the close proximity of the river. Willow and alder are well-represented in the present day on the damp river soils and there seems no reason to assume that they would not have grown here in earlier times. By implication, it seems that these were more important for other aspects of the local economy, such as hurdle making and basketry.

DISCUSSION

Mesolithic by Phil Harding and James Wright

The study of the worked flint assemblage from Goch Way has made a significant contribution to the knowledge of Mesolithic activity in the Andover area. This material represents the first discovery of a probable Mesolithic occupation site in the River Anton basin. The immediate area was only known to have yielded a number of Mesolithic picks from surface collections (S. Davies
pers. comm.), although a small concentration of Late Mesolithic/Early Neolithic worked flint was identified through a programme of surface artefact collection during the evaluation of the Enham Lane site to the north (Wessex Archaeology 1995).

There are also sparse records of other individual Mesolithic artefacts further afield, including a pebble mace-head from the excavation of an Iron Age and Roman site at Knights Enham (1.5 km to the north), and a tranchet axe from Penton Grafton (3 km to the west). An assemblage of blades and flakes with scrapers and a microlith was found at Chilbolton, near the confluence of the Test and Anton.

Although the Goch Way site is located on river and valley flint gravel, most of the worked flint was recovered from aeolian deposits which are thought to be of Late Glacial date. It is possible that the whole area had once been covered by this wind-blown material which now survives only in the deeper hollows within the surface of underlying gravels.

The site occupies a south-east facing slope on a terrace overlooking a tributary of the River Anton and would have provided an attractive campsite to groups of hunters exploiting the river valley. The recorded flint scatter represents a relatively large area of activity, over 1,750m2. Excavations elsewhere in Britain have indicated that these sites probably comprise a number of nucleated concentrations, which represent the evidence of repeated visits to a traditional campsite rather than a single occupation event.

The small assemblage from the excavated test pit produced evidence of tool manufacture and microlith production. The lack of systematic recovery or larger scale excavation means that it is not possible to isolate the extent of separate knapping scatters. Nor is it possible to identify individual activity areas (defined by retouched implements) where tool manufacture, skin processing, core reduction or butchery may have taken place. More importantly it is impossible to relate these activities to the location of potential hearths as represented by the distribution of burnt flint concentrations.

The microlith assemblage from the site is too small to provide detailed information relating to activity. All are small, obliquely blunted points, which are the most common type on all Mesolithic sites. The two complete specimens measure 20mm and 25mm in length which indicates deliberate selection of blanks given that most of the blade assemblage is over 40mm long.

Barton (1992) examined the diversity of tool kits at selected Mesolithic sites in an attempt to determine the function of the site at Hengistbury Head. He drew a distinction between high ground hunting camps, with a restricted tool kit of end scrapers, oblique microliths and microdenticulates and low lying riverside camps with a more diverse range of tools, including burins, axes/adzes and drill bits and activities. The limited extent of the excavation and tool recovery mean that it is difficult to apply this model to the Goch Way site. However, the work undertaken has produced obliquely blunted points, scrapers and a possible 'unstruck' tranchet axe in addition to the Mesolithic picks found during surface collection in the area. This tool kit and the general location within a river valley suggest that the site should be regarded with the lowland riverside camps rather than the upland bases that served as short term hunting camps.

The position of the Goch Way site lies between the different environments of the chalk downs and the basin of the River Anton. This would provide a wide range of foods and other resources. Cunliffe (1993, 33) suggests a degree of mobility among individual bands staying in their own territory for part of the year but coalescing in larger groups for communal activities at other times. He considers large base camps existed at Broom Hill (O’Malley and Jacobi 1978), Thatcham (Churchill 1962; Wymer 1962) and Oakhanger (Rankine 1952; Rankine and Dimbleby 1960) where, probably in winter, the smaller groups met up. The Goch Way site is positioned almost mid-way between Broom Hill and Thatcham and both sites would be about a day’s journey distance.

Nearby is the Harroway, considered by Hawkes (1927) to be the most important of the Hampshire ridgeways and potentially linking Cornwall and Kent. These long distance trade routes are considered to be the oldest prehistoric routes, although it is accepted that these grew out
of the linking together of existing local trackways (Timperley and Brill 1983). The previously unknown presence of Mesolithic settlement activity adjacent to a section of the Harroway may suggest that locally this track had its origin in a Mesolithic route from the settlement to the downs.

Late Neolithic

A single small pit produced Grooved Ware pottery and worked flint. The unpatinated nature of the flint, the use of a hard hammer and lack of platform preparation are all in contrast to the Mesolithic techniques described above, and the flint is probably contemporaneous with the pottery. The charred remains from the pit suggest an environment of woodland or scrub, and may reflect some scrub regeneration of cleared land. A quantity of charred hazel nuts was found at the base of the pit.

Grooved Ware pottery is more usually associated with the larger ceremonial or ritual centres of the Late Neolithic, such as henges, pit complexes or passage graves (Gibson 2002, 87). When found in pits, Grooved Ware often forms one component of a structured deposit, associated with objects such as intact stone axes, bone pins, and animal or human skulls (Pollard 2002, 26). Within Wessex there is also an observed association with pig (Gibson 2002, 24), and this may be linked to feasting or other forms of conspicuous consumption.

The Grooved Ware pit at Goch Way did not contain any other 'exotic' objects, and any bone that may have been contained within the pit would perhaps not have survived. However, the presence of food elements such as hazel nuts and sloes, and indeed one small grain of free-threshing bread wheat, could be indicative of the deposition of elements relating to feasting.

No evidence of activity of this date was recovered during the archaeological investigations at the adjacent site of Enham Lane. A number of isolated finds of stone axes and mace heads have been found in the general vicinity of Charlton, and although the excavations at Old Down Farm located two pits of Late Neolithic date, the pottery recovered from here was Peterborough Ware rather than Grooved Ware (Davies 1981). The nearest monument of Neolithic date is the long barrow at Nutbane, 3.6 km to the north-west.

Early Saxon

The three sunken-featured buildings (SFBs) at Goch Way provide a further addition to the increasing number of similar structures recorded and published in recent years from the surrounding areas of Hampshire and Wiltshire. In the immediate vicinity are the six SFBs excavated at Old Down Farm (Davies 1980), and further afield are those at Collingbourne Ducis (Pine 2001), Cowdery's Down (Millet and James 1983) and Riverdene (Hall-Torrance and Weaver 2003) both in Basingstoke, Northbrook (Johnston 1998) and Abbots Worthy (Fasham and Whinney 1991).

Whilst SFBs 104 and 1003 at Goch Way fit comfortably within West's (1985) type A category of two-post structures, SFB 1008 is slightly more unusual in having two further, centrally-placed postholes along the main axis and does not conform to any of the categories described by West. These postholes clearly do not represent a replacement of the main, end posts – or additional posts shoring-up the building's roof, a feature which is relatively commonly seen, presumably necessitated by the rotting of the original posts. Single, additional, centrally-placed postholes have, however, been recorded in buildings elsewhere, for example, SFB 490 at Old Down Farm (Davies 1980, 163), SFB C17 at Cowdery's Down (Millet and James 1983, 225) and SFB 105 at Collingbourne Ducis (Pine 2001, 93). These too might best be interpreted as additional, perhaps original supports for the ridge-pole. Apart from these, there were no other postholes or stakeholes such as have sometimes been recorded elsewhere (e.g. Pine 2001, SFB 105, 92-3), and which might have been associated with internal structures such as looms or raised floors. In this respect, the evidence from the SFBs at Goch Way provides no clear indication as to whether these had floors on the base of the pits, or raised planked floors; there were, for example, no surviving hearths.
There are insufficient differences between the ceramic assemblages recovered from the three SFBs at Goch Way to be able to establish an internal chronology for this phase of activity at the site. All that can be said is that the pottery indicates a potential date range spanning the 5th–7th centuries. There is a very slight difference in the pottery from SFB 104 and that from SFBs 1003/1008, and both of the Roman coins recovered during the excavation were found within SFB 104. At West Stow, however, Roman pottery was recovered from SFBs of all phases (Plouviez 1985).

The three SFBs were of similar size, though of slightly varying shape and alignment, and their fills and associated artefacts show too little variety to be able to differentiate any use of the buildings apart from the textile equipment found in SFB 104. SFBs 1003 and 1008 both contained potential primary fills (i.e. material that had accumulated during the use of the building or just after its abandonment), but in both cases these fills contained no artefacts. The other fills were mixtures of silty loam and gravel that are likely to have formed some time after the buildings had gone out of use. Fill 101 within SFB 104 contained a dump of ashes from a fire, but this is likely to have postdated the use of the structure. Similarly the remains of cereal preparation that were recovered from SFB 1003 came from the upper fill and were only incorporated into the backfill of the building after it was abandoned.

The most unusual find was a fragment from the rim of a Saxon copper alloy bowl, of a type normally found in funerary contexts. Two glass beads were also found, similar to examples in the Portway cemetery which is almost 2 km distant (Cook and Dacre 1985), perhaps indicating a link between the two sites. Amongst the few other non-ceramic finds, the knife and a whetstone may simply have been for domestic use, though the spindle-whorls and the bone pins provide some evidence for textile production which appears ubiquitous on sites of this period. Two late 3rd century Roman coins also represent a relatively common find in SFBs, presumably collected as curios or for recycling. The relatively small artefactual assemblage can be paralleled at many other sites including Old Down Farm where, apart from the pottery, there was a small quantity of animal bone and few other finds (Davis 1980, 174–7).

It is worth noting the apparent absence of any Saxon features other than SFBs at Goch Way. There is, for example, no evidence for any post-built timber halls. It is possible that these have not survived, but the presence of substantial postholes associated with the SFBs does not make this explanation convincing, neither is the possibility that they lay outside the excavated area. The absence of such structures was also noted at Old Down Farm where a much larger area was examined (Davies 1980, 178–9), and there is no clear evidence for their existence at Collingbourne Ducis (Pine 2001, 114). Goch Way appears to be another site where there were few or no post-built halls, with the inference that the SFBs were themselves occupied rather than being simply ancillary structures used, for example, for weaving. Other sites, however, have a mixture of SFBs and post-built halls, for example Riverdene in Basingstoke where there were as many as 11 SFBs and seven possible post-built structures (Hall-Torrance and Weaver 2003), and Cowdery’s Down nearby (Millett and James 1983) which had several substantial halls and few SFBs. It is unclear whether these differences reflect one or a variety of factors including status, location and chronology.

No ditches or pits were present at Goch Way, nor were any found at Old Down Farm (Davies 1981). Pits are generally uncommon on Early Saxon sites and their presence, like that of ditches, may be more generally associated with sites of slightly later, Middle Saxon date. For example, three small pits are recorded at Collingbourne Ducis where most of the settlement is assigned to the early 8th to 10th century (Pine 2001, 96), and several larger examples were excavated at Abbots Worthy where settlement spanned the 6th–8th/9th century (Fasham and Whinney 1991, 32–9). None of the sites considered here have provided incontrovertible evidence for contemporary ditched boundaries or enclosures, for example an enclosure at Abbots Worthy (Fasham and Whinney 1991, 28–9) and two parallel ditches at Riverdene (Hall-Torrance and Weaver 2003, 85) may be of prehistoric rather than Saxon date.

The full extent of occupation at Goch Way...
remains unknown. It appears to represent an open, dispersed site and it is quite possible that the SFBs were not contemporary but represented part of a shifting settlement which spread along this part of the Anton Valley. Cunliffe (1993, 289) has suggested a complex pattern of land use in this area involving sites at Old Down Farm, Charlton and the cemetery at Portway. To this must be added the present site and the settlement features c. 600m to the west seen during construction of a gymnasium (Hampshire Archaeology 1997).

The six SFBs at Old Down Farm, only c. 200m to the south, dated to the 6th century on the basis of the ceramic evidence (Davies 1980), were perhaps contemporary with the earliest phase of Saxon settlement at Goch Way, possibly part of the same, shifting settlement that straddled both the Portway Roman road and the river. At Old Down Farm two clusters each comprising three SFBs might be discerned, possibly representing family units. To the north-west at Charlton, on the other side of a small tributary of the Anton, a 5m diameter pit was excavated in advance of road works (Dacre and Warmington 1977). This contained grass-tempered and stamped pottery of presumed Saxon date, as well as animal bone, fragments of bronze and a glass bead. At the Gymnasium Site to the west, features suggestive of settlement were observed prior to construction. These included a posthole, three stakeholes, several elongated features and a circular pit. Pottery dating to the 5th to 7th centuries was recovered along with animal bone, a bone comb, a bone awl and charred grain (Hampshire Archaeology 1997).

Together, the Old Down Farm, Goch Way, Charlton and Gymnasium sites suggest that there was Saxon settlement on both sides of the river and perhaps spread over a considerable area. To the west lay the Portway cemetery containing 61 inhumation and 80 cremation burials, predominantly of 6th century AD date (Cook and Dacre 1985). Although c. 1.4 km west of the Goch Way site, the Portway cemetery was located adjacent to the Portway Roman road that also passed close to the Goch Way site, the Gymnasium Site and Old Down Farm, perhaps reflecting the continued use of this route in the Saxon period.

The focus of Saxon settlement and burial sites along this part of the Anton valley and its tributaries has been further highlighted by the discoveries at Goch Way, with activity in this area perhaps spanning the 5th to at least the 7th century. Similar patterns are emerging in other river valleys, for example at Collingbourne Ducis c. 10km to the north-west in the Bourne valley. Here ten SFBs representing part of a larger settlement lay only c. 100m from the river, one of 5th to late 7th century date, the remainder assigned to the early 8th–10th century, later than normally might have been assumed without the evidence of radiocarbon dating (Pine 2001). A nearby cemetery, only 150m to the north, partially excavated in the 1970s, has been dated to the 5th–6th century (Gingell 1978). In the Itchen valley to the south, the 6th–8th/9th century riverside settlement at Abbots Worthy (Fasham and Whinney 1991, 25–78) and a probably associated cemetery 700m to the north on the higher ground at Worthy Park (Hawkes and Grainger 2003) reflect a relatively long period of Early–Middle Saxon occupation. Settlement and possible cemetery finds have also come from the Dever valley at Northbrook (Johnston 1998), and relatively extensive settlement is now attested in the Loddon valley at Basingstoke from sites at Cowdery's Down (Millett and James 1983) and Riverdene (Hall-Torrance and Weaver 2003).

The site at Goch Way, like most of those referred to in the discussion above, particularly the settlement sites, represent discoveries made in the past 25 years. It is certain that further excavations, most in advance of building and associated development, along with the large numbers of finds now being recorded from metal-detecting, will further enhance our understanding of the evolution of the Saxon landscape during the 5th–10th centuries. What, perhaps, is most needed is to refine as far as is possible the dating of these and future sites, both settlements and cemeteries, so that the sequence of occupation in areas such as the Anton valley can be better appreciated.

ACKNOWLEDGEMENTS

The programme of archaeological work at Goch Way was commissioned and financed by the CS Hunt Trust and Wessex Archaeology is grateful for the support and assistance of the Trustees and of Parker Bullen Solicitors.
in facilitating the work. The briefs for each phase of the response were prepared by the late Alison Borthwick, whose knowledge and enthusiasm regarding the archaeology of the region is sadly missed. The collaborative role of David Hopkins and Ian Wykes, both Hampshire County Council, is gratefully acknowledged.

The field work was undertaken by Mike Trevarthen, Jamie Wright and Julie Lovell, assisted by Nick Wells, Phil Jefferson, Jim Chapman, Gemma Smith, Barry Hennessy, Steve Legg and Angela Brennan. The project was managed on behalf of Wessex Archaeology by Mick Rawlings. The illustrations are by Rob Goller and S.E. James.

REFERENCES

Barton, R N E 1992 Hengistbury Head Dorset. Volume 2: The Late Upper Palaeolithic and Early Mesolithic Sites, Oxford; Oxford University Committee for Archaeology Monograph 34.

Cook, A M & Seager Smith, R H undated The Pottery from Charlton Link Road, Andover, unpublished archive report.

Cunliffe, B 1993 Wessex to AD 1000, London.

Fulford, M G 2000 New Forest Roman Pottery, Oxford; (BAR Brit Ser 17), (2nd ed.).

Gibson, A 2002 Prehistoric Pottery in Britain and Ireland, Stroud.

Pine, J 2001 The excavation of a Saxon settlement at Cadley Road, Collingbourne Ducis, Wiltshire, Wilt Arch Mag 94, 88-117.
Plouviez, J 1985 The late Romano-British pottery, in West 1985, 82-5.
Stace, C 1997 New Flora of the British Isles, Cambridge (2nd ed.).
Timperley, H W & Brill, E 1983 Ancient Trackways of Wessex, Shipston-on-Stour (2nd ed.).
West, S E 1985 West Stow, the Anglo-Saxon Village, Ipswich; East Anglian Archaeology Report 24.