ABSTRACT

Excavations in 2014 at Shepherds Spring School, Andover identified a rare Early Neolithic pit containing an important assemblage of worked flint and Carinated Bowl pottery. Middle–Late Iron Age and early Romano-British features included a substantial enclosure ditch of at least two phases, storage pits and the remains of the Portway Roman road.

INTRODUCTION

The 2014 excavation at Shepherds Spring School, Smannell Road, Andover, centred on NGR SU 36650 47160, formed part of a phased programme of archaeological investigation undertaken by Wessex Archaeology on the site, which is located 1.8km to the north-east of the centre of the town of Andover (Fig. 1).

An earlier desk-based assessment, geophysical survey and trial trench evaluation had indicated the potential for archaeological remains on the 1.4ha site (Wessex Archaeology 2007; 2008; 2014), which occupied the former playing fields of the school and was proposed for development (Fig. 1).

The site slopes down very slightly towards the south, lying at an elevation of around 73m above Ordnance Datum, with a 0.45m deep layer of Clay-with-Flints capping the underlying Upper Chalk (British Geological Survey, online viewer).

Archaeological excavations in Andover and the surrounding chalk downland have produced a considerable body of evidence for human activity dating from the Mesolithic to the medieval periods. Early prehistoric activity is represented by Mesolithic worked flints found at Goch Way 1km to the west (Wright 2004) and there is evidence of Neolithic activity across Andover from sites such as Old Down Farm (Davis 1981), Enham Lane (Wessex Archaeology 1997) and East Anton (Firth 2013).

The site is located within the hinterlands of the major Iron Age enclosures of Balksbury and Bury Hill, with the smaller enclosure at Old Down Farm nearby. Occupation spanning the Iron Age occurs across Andover and has been recorded recently at Viking Way (Weaver 2002), Picket Twenty (Ellis 2014) and in East Anton (Firth 2013). Approximately 500m to the east of the site lies the cross-roads of two Roman roads, the Icknield Way (Winchester to Wanborough) and the Portway (Old Sarum to Silchester), the latter projected to run through the site. Evidence for substantial settlement activity and associated cemeteries in the Romano-British period has been recorded in the areas around Genoa Court and East Anton (Cook & Dacre 1985; Weaver 2002; Firth 2013); this location has been claimed to represent the Roman town of Leucomagus (Rivet & Smith 1979).

ARCHAEOLOGICAL FIELDWORK

An initial geophysical survey identified a number of linear-type features across the middle of the site (Wessex Archaeology 2008). These features were tested by a subsequent trial trench evaluation which found archaeological remains of Iron Age and Romano-British date in almost all trenches (Wessex Archaeology 2014). As a result of this, in March 2014, 0.6ha of the total 1.4ha development area was stripped of topsoil and subsoil under archaeological supervision (Fig. 1). No significant
Fig. 1 Site location plan
truncation was apparent and a variety of prehistoric and Romano-British features including post-holes, pits, gullies and ditches were identified, as well as a single post-medieval quarry pit. A watching brief undertaken later during groundworks on land 20m to the south (see Fig. 1) revealed no further features of archaeological interest.

The sequence presented below is based on a combination of ceramic and, where available, stratigraphic evidence. There is some overlap and lack of clarity about the late prehistoric chronology but, despite a degree of residuality, two broad pottery groups have been distinguished: Middle–Late Iron Age and latest Iron Age–early Romano-British, with two stratigraphic phases covered by the latter group.

Neolithic

The earliest evidence for human activity was a single pit of Early Neolithic date. Pit 1388 was bowl-shaped and measured 0.8m in diameter and 0.23m deep (Figs 2 & 3). A significant Neolithic assemblage of pottery, worked flint and hazelnut shells had been deposited within the pit, with the lower of the two fills noticeably charcoal-rich. The fragmentary pottery represents a minimum of four vessels, at least two of which are typical Carinated Bowls that appear towards the beginning of the 4th millennium BC, and which are scarce from Early Neolithic contexts in Hampshire. A significant proportion of the worked flint from the site was recovered from the pit (870 pieces from a total of 997) and included relatively fresh blades, flakes and microdebitage. Other than hazelnut shells and wood charcoal, no charred cereal remains or weed seeds were present.

The small pit probably reflects short-lived occupation, and the finds and environmental assemblages may represent debris from a camp/occupation site that had been disposed of in the pit in a more-or-less single event. However, it is possible that some of the flint may have been left exposed on a midden prior to deposition, and elsewhere on the site worked flints of probably the same date were recovered from the topsoil/subsoil and residually within later features. For example, during the evaluation a patinated flake and a nicely manufactured flake knife were recovered from the eastern side of the site. The technology of the former, which appears to have been undertaken using a soft hammer, and the typology of the latter suggest that these two pieces are residual and probably date from the Neolithic period.

Middle–Late Iron Age

The first large-scale impact on the landscape of the site occurred during the Middle Iron Age. In total 21 features have been phased to the Iron Age, pottery recovered from these features spanning the Middle to Late Iron Age, although the majority of sherds could only be dated to the broader Iron Age.

Enclosure ditches

A large D-shaped enclosure formed by ditch 1606 defined an area of approximately 1180m², with seven broadly contemporary pits located within the enclosure (Fig. 2). Subsequent re-modelling during the Late Iron Age–early Romano-British period of the northern and eastern sides of the enclosure led to the original Iron Age ditch being entirely truncated in these areas. Ditch 1606 was 2.35m wide, approximately 1.55m deep and had a V-shaped profile (Fig. 3). It was only possible to confidently identify the southernmost terminals of the ditch, where the sides rose steeply from the base of the ditch to form a rounded butt end. The ditch contained up to seven deposits, largely formed as a result of natural silting; the lower fills produced Late Iron Age pottery and animal bone, while Middle–Late Iron Age pottery, animal bone and 45kg of burnt flint were recovered from the upper fills.

Although not certain, it is possible that a bank was located on the inside of the ditch; this was not clear from the sequence of ditch fills but can be inferred from the location of pits. A 3–4m gap was apparent between the edge of the enclosure ditch and the area of pit digging. Only two earlier pits (1249 and 1259) were located within this ‘zone’, and they were clearly cut by the enclosure ditch.

Pits

The earliest features were pits 1249 and 1259 (Figs 2–3); both had cylindrical profiles and
Fig. 2 All features plan
stratigraphically pre-date D-shaped enclosure 1606. Both pits contained Middle Iron Age pottery and a quantity (2.3kg) of fuel ash slag/vitrified clay was present in pit 1249.

Seven contemporary storage/rubbish pits were identified within the D-shaped enclosure. The pits were generally sub-circular in plan with steep to undercut sides, and where fully excavated were flat-based. The pits ranged from 1.1m to 2.35m in diameter and were between 0.13m and 1.4m deep. The fill sequences recorded indicate a mixture of natural silting and deliberate backfilling. No placed deposits were present within the pits but a relatively large assemblage of pottery, animal bone and burnt flint was recovered. The pits conform to the classic Iron Age storage pits known widely from Hampshire at sites such as Danebury (Cunliffe 2000). Although no evidence for the primary function of the pits was ascertained, it is probable that the pits were originally for storage.

Pits 1210 and 1219 shared similar, cylindrical profiles with flat bases, and both were sub-cir-
cular in plan; they measured between 2.1m and 2.3m in diameter and between 1.04m and 1.15m deep (Figs 2 & 3). Towards the base, the sides of both features were slightly undercut, but the infilling of the two pits differed. The lower fills of pit 1210 appeared to represent natural silting, with a thin primary deposit on the base of the pit. The upper four deposits were probable backfills and contained domestic refuse/dumps which included Middle Iron Age pottery and a re-deposited human bone. The sequence within pit 1219 contained noticeably more deliberate backfills. The lowest fill (1225), a thin (0.03m) spread across the base of the pit, was a dark charcoal-rich deposit; wood charcoal and barley grain fragments were recovered from environmental samples. Above this deposit a sequence of deliberate backfills contained Middle–Late Iron Age pottery.

Pit 1460 was relatively large, of conical form and was not bottomed (Figs 2 & 3). The upper fills showed evidence for multiple tips or dumps with thin, alternating deposits of charcoal-rich material and chalk. These deposits possibly represent rubbish deposition followed by capping layers. Pottery from the pit spans the Middle to Late Iron Age.

Structures

The truncated remains of a ring- or drip gully, 1604, were located towards the northern edge of the site; two post-holes (1399 and 1401) continued the arc of the gully towards the east (Fig. 2). Taken together the gully and post-holes form a semi-circle in plan with a projected diameter of approximately 12m. At its western end gully 1604 was cut by possible Roman road ditch 1601, and to the east the gully had a rounded terminal, though this may have been the result of truncation. No dating evidence was recovered from gully 1604, but post-hole 1399 contained a sherd of Middle Iron Age pottery.

A group of eight, possibly nine, post-holes (1605) were located towards the northern edge of the site and may represent a structure. Seven of the post-holes formed a broadly rectangular shape in plan which measured 5.2m by 4.2m (21m²). The post-holes were oval to circular in plan and measured up to 0.58m in length, 0.5m wide and 0.28m deep. Two sherds of Middle–Late Iron Age pottery were recovered from pit 1226, and post-hole 1245 also contained Iron Age pottery and a large quantity of wood charcoal. The structure showed the same alignment as Late Iron Age–early Romano-British ditch group 1608 (see below), with which it may have been contemporary, although the pottery assemblage indicates an earlier date.

Late Iron Age–early Romano-British (Phase 1)

During the Late Iron Age–early Romano-British period a re-organisation of the enclosure was undertaken. D-shaped enclosure ditch 1606 was re-cut and extended on its northern side by ditch 1608 (Fig. 2). Within the rectilinear enclosure created was evidence for settlement in the form of storage/rubbish pits.

Enclosure ditches

Large, rectilinear enclosure ditch 1608 was either cut into or extended the D-shaped enclosure 1606 to the north-east (Figs 2 & 4). Ditch 1608 enclosed an area of approximately 0.1ha, but the majority of the enclosure lay to the north beyond the limit of excavation. The ditch was 3.85m wide, had a steep V-shaped profile and was up to 2.2m deep. A 4.5m wide entrance to the enclosure lay towards the north-eastern corner of the site; a cattle skull was found within the upper fills of each ditch terminal forming the entrance. The two cattle skulls had been deposited in the ditches once they had partially silted up, but it is unclear whether the skulls were placed deposits or formed part of the broader backfilling of the ditches. Both terminals also contained large flint nodules in their upper fills, whilst sections to the south contained quantities of charcoal and burnt flint. The general silting sequence shows that deposits probably derived from erosion of the internal bank, as well as the ditch sides, had formed within the bottom 1.5m of the ditch, and the upper fills comprised episodes of deliberate backfilling and natural silting. Pottery ranging from the Iron Age to the Roman periods was recovered from the ditch, with the greatest quantities dating to the Late Iron Age–early Roman period (131
Large quantities of burnt flint (76kg) were present in the ditch, most notably in the upper fills along the south-eastern side of the enclosure, and may represent deliberate backfilling.

Re-cutting of the enclosure was identified along its south-western side, where a slightly shallower ditch, 1607, formed a partial re-cut along the line of ditch 1608 and D-shaped enclosure 1606 (Figs 2 & 4). Ditch 1607 had a steep V-shaped profile and was 3.6m wide and up to 1.33m deep. It rose towards the south-east to a shallow bulbous end that corresponded with the terminal of earlier ditch 1606, and it is likely that both ditches were still partially open when ditch 1607 was dug. On the western side of the enclosure a near-complete skeleton of a small adult dog came from the terminal of ditch 1607, and within the northern return of the ditch was a moderate quantity (91 sherds/1399g) of early Roman pottery.

The deposit sequence within ditch 1607 indicates that the ditch was deliberately backfilled. Above the lowest primary fill were dumps of material consisting of burnt flint, pottery and animal bone, along with gravel within a dark grey silty clay matrix. The backfilled deposits may relate to the abandonment of the settlement, or possibly the creation of the Portway Roman road, and the concentration of gravel may be significant in this respect (see below).

Fig. 4 Sections: Late Iron Age – early Romano-British ditches
A possible sub-rectangular enclosure was partially exposed at the southern edge of the site, represented by ditches 1229 and 1232 (Fig. 2). Both ditches had moderate, straight sides and concave bases and were between 0.9m and 1.1m wide and up to 0.4m deep. Late Iron Age and early Roman pottery, worked flint, animal bone and burnt flint were recovered from the latest of the two ditches (1229). No features were identified within the enclosed area, which continued beyond the southern limit of excavation; the form, extent and function of the postulated enclosure remains unknown.

Pits

Four pits, located within the area defined by ditch 1607, have been assigned to the Late Iron Age–early Romano-British period (Fig. 2). The pits had cylindrical to slightly undercut profiles and the fills contained domestic rubbish. They varied in size between 2.06m and 2.53m in diameter and between 0.54m and 1.14m deep. Pit 1299 contained an articulated cattle skeleton on the base of the pit; horse bones with butchery marks were also recovered from the upper fills, suggesting the deposition of consumed meat joints.

Pit 1460 possibly provides an example whose use spanned the Middle Iron Age to Late Iron Age–early Romano-British periods. The pit was excavated to a depth of 1.14m, but was not bottomed. Middle–Late Iron Age pottery was recovered from the lowest excavated fill, whilst the upper fills contained Late Iron Age–early Romano-British pottery. Redeposited human remains, comprising two neonates and one foetus, were present in the lower fills of the pit; one of the neonates possibly represents an in situ but disturbed inhumation burial. Immediately above the deposit containing human bone was a thick band of flint nodules that may represent an attempt to seal off the lower deposits. Further possible capping/sealing deposits of chalk were present at the top of the deposit sequence.

Late Iron Age to early Romano-British (Phase 2)

A second phase of Late Iron Age–early Romano-British activity was identified on stratigraphic grounds. Two gullies crossed the site from north-east to south-west and probably represent the roadside ditches associated with the Portway Roman road.

Road-side ditches

Two parallel gullies, 1600 and 1601, were on stratigraphic grounds the latest features within the Late Iron Age–early Romano-British phase (Fig. 2). The gullies were approximately 17.5m apart and somewhat truncated; ditch 1600 survived as two sections, and a further possible section of gully (1104) was recorded in an evaluation trench to the east of the excavation area. Both gullies had shallow, concave profiles (0.5–1m wide and 0.18–0.27m deep) and contained naturally silted deposits. Along the southern edge of gully 1601 was a distinctly gravelly deposit, which may represent the eroded remains of a road surface. Further possible remnants of the road surface (1492) were recorded in the top of ditch 1607. Deposit 1492 contained abundant gravel inclusions, and was encountered at a slightly higher level than the surrounding stripped natural. This deposit was probably preserved within the hollow of the earlier ditch and may in part represent deliberate backfilling of the ditch during road construction, or the road itself.

Post-medieval

A large quarry pit 1280, located to the western side of the site (Fig. 1), measured 10.4m by 9.65m and was up to 2.4m deep. Three pieces of peg tile from the feature indicate a post-medieval date.

THE FINDS

Worked flint by Phil Harding

The worked flint assemblages from the evaluation and excavation, as quantified by context type, shows that 40 excavated contexts produced worked flints. The largest assemblage was recovered from Early Neolithic pit 1388, which accounted for 87% of the entire collection (Table 1). The remaining groups were collected from Iron Age and Romano-British pits and ditches across the site. This material
Table 1 Worked flint quantification

Feature	Contexts	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total	
E Neo pit secondary		2	2	1	11	7	2	1	47	63	–	5	1	–	–	–	–	4	1	145
E Neo pit primary		2	2	1	16	5	13	16	98	118	4	440	1	–	–	–	–	8	3	725
IA pit		12	2	–	1	1	1	–	21	15	–	–	1	–	2	–	–	3	1	46
IA−RB pit		3	–	–	1	1	–	–	2	3	2	–	–	–	–	–	–	1	–	10
IA ditch		8	–	1	1	–	–	1	17	15	–	3	1	1	–	–	–	2	1	43
IA−RB ditch		6	–	–	2	–	–	1	11	5	–	2	–	–	1	2	1	1	26	
Others		7	–	–	–	–	–	3	4	–	–	–	1	–	–	–	–	1	9	
Total		40	6	3	32	13	16	19	199	223	4	450	6	2	2	1	2	19	7	1004

KEY: 1-Flake cores; 2-Broken cores; 3-Blades; 4-Broken blades; 5-Bladelets; 6-Broken bladelets; 7-Flakes; 8-Broken flakes; 9-Rejuvenation tablets; 10-Chips (microdebitage); 11-Scrapers; 12-Other tools; 13-Axe thinning flakes; 14-Core tools; 15-Microdenticulates; 16-Debitage; 17-Miscellaneous retouch.
is similar, in many respects, to that from the Early Neolithic pit and probably represents derived material from the earlier period. That residual material is present is substantiated by a backed knife from subsoil (1002), two micro-denticulates from ditches 1390 and 1499, and a flake from a polished flint tool, probably an axe, from pit 1460. In addition, a probable failed, bifacial core tool rough-out or core was found in ditch 1493. These objects, together with a number of well-made blades, indicate a spread of probable Early Neolithic activity that radiates at least 25m from pit 1388, although this distribution is largely determined by the spread of features relating to later prehistoric occupation.

Condition and raw material

Worked flint from Early Neolithic pit 1388 is in mint condition and unpatinated. Artefacts from later prehistoric features are similar, although a few are patinated light blue/white or displayed post-depositional edge chipping indicating a prolonged hiatus between their discard and inclusion in the feature. The raw material comprises flint that is predominantly light grey, with darker mottling, and weathered cortex that ranges up to several millimetres thick but is elsewhere apparent only as a thin rind. Nodules were clearly derived from the Clay-with-Flints that locally caps the Chalk bedrock. Flint from this source is typically of good flaking quality.

Early Neolithic pit 1388

The worked flint from pit 1388 was collected from a lower charcoal-rich primary fill, which contained most of the artefacts, and an upper secondary fill. These two units were clearly defined; however, the individual groups of material were sufficiently similar to suggest that the contents probably represent a single industry that was dumped on one occasion. The largest component comprised microdebitage (chips) (Table 1); a sieved sample from the primary fill produced 609 pieces, of which 143 (23%) pieces were burnt. When the microdebitage was subtracted from the overall total the results show that debitage (blade/lets and flakes) accounted for 94% of the remaining material. Blade/lets accounted for 17% of the assemblage and 21% of the debitage. Retouched material, which accounted for only 1.4% of the assemblage total, comprised only two flake scrapers and four pieces with miscellaneous retouch.

These results indicate an assemblage that is dominated by blank production debris, which may hint that activity in the immediate locality was industrial rather than domestic. A similar line of argument was adopted to explain variations in pit contents at Kilverstone, Norfolk (Garrow *et al.* 2005). Most aspects of the reduction sequence are represented at Shepherd’s Spring School, although core preparation flakes and the cores themselves are scarce. Flaking and retouch activities are both reflected in the proximity by bulbar scars and at least one diagnostic retouch chip.

The cores are indistinguishable in appearance, indicating that at least four nodules, and possibly more, given the ratio of cores to flakes, 1:100, might be represented. Despite the limited number of nodules that might be involved the assemblage showed no clear potential for refitting. In contrast, the quantity of burnt material suggests that debris had been exposed, either on the old land surface or in a midden, before it was placed in the pit, and represents only a sample of the total debris that might have been produced.

The discarded cores were dominated by rotating cores, with multiple striking platforms, from which flakes had been removed in the final stages of blank production. Striking platforms were irregular with no use of platform abrasion to prepare the core before blanks were removed. The percussion points also suggest the use of hard, probably flint, hammer stones. Core control was maintained by the periodic removal of bold rejuvenation flakes when flaking angles became too abrupt. Despite this robust approach to flaking, cores continued to be flaked to a point at which relatively small blanks were being removed.

Most of the worked flint from the site probably relates to this Early Neolithic activity; however, it is possible that some later prehistoric flakes are also represented, perhaps including one with denticulate retouch, which might be a crude core, from ditch 307 and a flake from quarry pit 207. This type of material
is well within what might be expected from a site of this type and, given the derived nature of these pieces, offers nothing to contradict the principal interpretation of flint working at the site.

Discussion
The Early Neolithic pit from Shepherds Spring School is a significant discovery. It contributes most notably to the study of the period in Hampshire, but also adds to the corpus of securely dated sites from the early part of the Neolithic across southern England. Pits of this type and date remain rarities in Hampshire, despite being one of the most common representations, singly or in groups, of Neolithic activity (Garrow 2012) in the country. Developer-funded fieldwork, combined with improved standards of excavation and more precise methods of dating are providing a more accurate framework for studying this activity.

The site location, occupying a spur overlooking the confluence of the River Anton and its western tributary, is of some interest and reinforces the strong bond between Early Neolithic communities and water courses. The use of the spur, possibly for only temporary occupation, mirrors site locations at Kilverstone, Norfolk (Garrow et al. 2005; 2006), Poundbury Farm, Dorset (Harding 2010) and Reydon Farm, Essex (Harding forthcoming), where Early Neolithic activity is represented by pits. The presence of bountiful supplies of flint in the Clay-with-Flints, a source utilised extensively both in the Mesolithic (Care 1979) and Neolithic periods (Gardiner 1990; Woodward 1991), provided additional attraction to the site.

The 425 pieces of worked flint that were recovered from the Early Neolithic pit at Shepherds Spring School, when microdebitage is excluded, is a relatively large quantity in comparison with other similar, contemporary groups. Larger assemblages have been recorded, including 974 pieces from a pit at Rowden, Dorset (Woodward 1991) and 711 pieces from Coneybury, Wiltshire (Richards 1990), from features that also contained Carinated Bowl pottery (see Brook below) indicating that they belong to the earliest phase of the Neolithic in Britain, around the 40th–39th centuries BC. In contrast twelve Early Neolithic pits from Poundbury Farm, Dorset averaged only 168 pieces from each pit (Harding 2010, table 3).

Despite variations in quantity, the assemblage is comparable with these assemblages from southern England in terms of composition (Harding 2010, table 3). Blades and flakes predominate and frequently account for over 90% of each assemblage. Cores are often under-represented with retouched material providing small, but variable components of each collection. Locally the assemblage is remarkably similar in terms of both artefact quantity and composition to an Early Neolithic assemblage excavated on Porton Down, Wiltshire (Andrews & Thompson 2016). This feature produced 546 pieces of material, predominantly blades and flakes, with a sparse retouched tool component, and was dated by radiocarbon to 3940–3700 cal BC and 3950–3700 cal BC respectively (SUERC-62632-3 at 95% confidence), making it possibly contemporary with Shepherds Spring School.

Pottery by Elina Brook

The assemblage consists of 2074 sherds, weighing 23,929g. This includes pottery of Early Neolithic, Iron Age and Late Iron Age–early Romano-British date. In general, the condition of the assemblage is moderate, with many rims are broken at the neck/shoulder junction, limiting full identification of form.

Methodology
The collection has been recorded in accordance with the current guidelines (Prehistoric Ceramic Research Group (PCRG) 2010; Darling 1994). The Early Neolithic material was subjected to detailed fabric and form analysis. Where possible, featured sherds were assigned a form type and other variables (e.g. surface treatment, decoration, firing and evidence of use) were also recorded. All other sherds were examined using a ×10 power binocular microscope and assigned to broad ware groups (e.g. sandy ware; flint-tempered ware) or known fabric types (e.g. Savernake-type ware). Vessel forms were compared with those already known from other, nearby sites (e.g. Danebury,
Old Down Farm and Enham Lane) and briefly described. A breakdown of the fabric totals by period is presented in Table 2.

Early Neolithic
A single small group of Carinated Bowl pottery (minimum of four vessels, 253 sherds, 741g) came from pit 1388. The condition of this material is poor and characterised by small sherds and a high degree of fragmentation (mean sherd weight 2.9g).

Fabrics
Four fabrics were identified, one flint-tempered (F1) and three sandy wares (Q1–Q3). Detailed fabric descriptions are contained in Appendix 1. With the exception of fabric Q2, it is likely that they are of local manufacture. Sandy ware fabric Q1 is fairly fine and the most common by far, comprising 79% (by sherd count) of the Early Neolithic assemblage. Two plain body sherds contain distinct black inclusions, possibly glauconite (fabric Q2), suggesting a non-local clay source near the Greensand, which is found approximately 15km to the north (British Geological Society viewer).

Forms and surface treatment
The assemblage includes 12 rim sherds from at least four vessels, three are simple and plain (R2–4; Figs 5.1 & 2) and one rolled (R1; Fig. 5.3). Most rims are too small to ascertain the vessel profile but when combined with other vessel elements, such as neck and shoulder sherds, it is possible to identify at least two vessels as typical Carinated Bowls. One vessel (fabric Q1) has a rolled rim and a distinct stepped, almost grooved shoulder (Fig. 5.3), whilst the second (fabric F1, Fig. 5.1) has a plain, slightly flattened rim and a more neutral profile. The necks of both are slightly concave.

A total of 17 body sherds (all in sandy ware fabric Q1) display evidence for mostly external wiping (except two sherds wiped on the interior). The curvature of one sherd indicates it is from the neck of a vessel. This type of surface treatment is rare but can be paralleled among a small number of Early Neolithic vessels from the South-West, including examples from Maiden Castle (Cleal 1991, fig. 141, 1 and 2) and Rowden (Woodward 1991, 98, fig. 52, 2).

Discussion
It is widely accepted that the earliest pottery in southern Britain is characterised by Carinated Bowl assemblages that appear towards the start of the 4th millennium BC (Cleal 2004; Whittle et al. 2011; Barclay forthcoming). As such, sites with what can be termed early or classic Carinated Bowl are scarce (Thomas 2013, 367), particularly in Hampshire. Locally, 16 flint-tempered sherds (101g) from a possible Early Neolithic, carinated bowl were found within an irregular feature at Enham Lane approximately 1km to the west (Wessex Archaeology 1997). However, given the small size of the Enham Lane assemblage and the presence of only one rim sherd, it is difficult to make further comparisons between the two collections.

Beyond this, further to the west, Carinated Bowls have been found at Coneybury and Cherhill, Wiltshire (Thomas 2013, 367). Typologically, however, closer parallels to the sandy ware vessel (Fig. 5.3) can be made with those from Rowden, Dorset (Woodward 1991, fig. 52,2), Cannon Hill, Maidenhead (Bradley et al. 1976, 11, fig. 6) and Clapham (Densem & Seeley 1981, fig. 5.2). These belong to what has now been identified as an earlier phase within the Carinated Bowl tradition dating to the 40th to 39th centuries BC (Barclay forthcoming).

The pottery assemblage is characterised by a small number of vessels represented by very abraded and fragmentary sherds present throughout both fills of the pit. Its appearance is in striking contrast to the large refitting sherds that make up the deposits from Cannon Hill, Rowden and the Coneybury Anomaly. This suggests that the pottery derives from general occupation debris, rather than from a single event (e.g. ritual feasting).

Iron Age
The Iron Age pottery (Table 2) represents approximately 30% (by sherd count) of the overall assemblage. Of this group there are 221 sherds (4201g) of Middle/Late Iron Age date and 286 (3273g) of Late Iron Age date, whilst the remainder (135 sherds/1053g) can only be dated broadly to the Iron Age period. With a
mean sherd weight of 13.3g the material is in moderately good condition, although there is some variability, particularly amongst the more lightly fired sherds.

Fabrics and forms
Twelve fabric types are represented (Table 2). These are dominated by flint-tempered wares (two fabrics), accounting for 48% by sherd count, and sandy wares (five fabrics) at 38%. The remainder of the assemblage comprised a wide range of wares, containing sand, flint, shell and other calcareous materials, grog, iron oxides and glauconite in various proportions and combinations. With the exception of one sherd of Mediterranean amphora (see below) and the nine sherds of glauconitic sandy ware, all are likely to be of relatively local origin. The range is comparable with those known from Danebury (Brown 2000, 81–5), Old Down Farm (Davies 1981), Enham Lane (Wessex Archaeology 1997) and other sites in the area (De’Athe 2013a & b; Ellis & Chaffey 2014). Like those of Early Neolithic date, the glauconitic fabrics probably derive from the Greensand areas, some 15km to the north.

The one body sherd of Mediterranean amphora came from Late Iron Age ditch 1606 and was associated only with other Iron Age pottery. It is probably from a Dressel 1 sp. which were imported from the Continent during the 1st century BC and were principally used to transport wine (Peacock & Williams 1986, 87). Seven body sherds were found at Danebury (Brown 1984, 247–8). The majority of sherds, however, are from a broad range of coarseware jars or jar/bowl forms, with at least one bowl (Fig. 6.6) recorded. Rim forms include upright, rounded and sometimes externally thickened and flat topped pieces, as well as beaded examples. Vessel forms comprise straight-sided jars, round shouldered jar/bowls, globular bodied jars and one example of a distinctly tall, narrow jar (Fig. 6.5). Smaller quantities of thinner walled, nicely finished body sherds also indicate the presence of a few fine ware vessels. Overall, the forms can be paralleled with those from Danebury (Brown 2000, particularly forms within ceramic phases 6–9) and the Middle/Late Iron Age phases at Old Down Farm and Enham Lane (Davies 1981, figs. 24 and 28; Wessex Archaeology 1997, figs. 14–18).

Surface treatment, decoration and evidence for use
Throughout the period, the most common form of surface treatment is burnishing which varied in its quality of finish. This was predominantly on the exterior of vessels, particularly on the rims and shoulders, but it is occasionally present on interior surfaces too. A small number of pieces are decorated, with tooing the most common technique. A flint-tempered bowl (Fig. 6.6) and a tall jar (Fig. 6.5) are both decorated on the shoulder with rows of tooled dots with oblique tooled lines below. This falls within Cunliffe’s St Catherine’s Hill-Worthy Down style dated to the 2nd and 1st centuries BC (1978, 46 and fig. A15). Other decorated pieces include a shell-tempered necked jar/bowl (pit 1450, Fig. 6.8) with a tooled zig-zag motif on the shoulder. Evidence for use can be seen on a bead rim jar from D-shaped enclosure 1606 and a round shouldered jar from pit 1552 (Fig. 6.2); both were heavily sooted on the lower half of their interiors indicating that they had been used in the preparation of foodstuffs or other materials.

Distribution
The Iron Age pottery came from a variety of feature types including pits, post-holes, ditches and gullies. Overall, the assemblage spans the period of the 4th through to the 1st centuries BC and is broadly comparable with other Middle/Late Iron Age ceramic assemblages in the area. There does, however, appear to be a chronological shift in the pattern of deposition. Of the sherds that could be dated to the Middle/Late Iron Age, 93% by count came from pits (and one post-hole) with just 7% from ditch deposits, whilst sherds dated to the Late Iron Age predominantly came from ditches (80%), with only 20% found in pits. Some of the larger and more distinctive groups are discussed here.

One of the earliest chronological groups came from pit 1210 (80 sherds, 695g). This contained a nicely burnished straight-sided vessel in a sandy fabric with affinities to the saucepan pot tradition (Fig. 6.1). Saucepan
Table 2 Pottery totals by chronological period and ware type

<table>
<thead>
<tr>
<th>Ware type</th>
<th>Fabric code</th>
<th>No. sherds</th>
<th>Wt (g)</th>
<th>% sherds</th>
<th>MSW (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Neolithic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flint-tempered</td>
<td>F1</td>
<td>20</td>
<td>154</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>Sandy ware</td>
<td>Q1</td>
<td>200</td>
<td>534</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Quartz sand and black grains</td>
<td>Q2</td>
<td>2</td>
<td>16</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Sandy ware (sparse)</td>
<td>Q3</td>
<td>31</td>
<td>37</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Sub-total</td>
<td></td>
<td>253</td>
<td>741</td>
<td>11.8</td>
<td>2.9</td>
</tr>
<tr>
<td>Late prehistoric uncertain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flint-tempered ware</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Sub-total</td>
<td></td>
<td>1</td>
<td>1</td>
<td><0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Iron Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flint-tempered ware</td>
<td></td>
<td>300</td>
<td>5170</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>Sandy ware</td>
<td></td>
<td>210</td>
<td>1741</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>Shell-tempered ware</td>
<td></td>
<td>41</td>
<td>497</td>
<td>12.1</td>
<td></td>
</tr>
<tr>
<td>Grog-tempered ware</td>
<td></td>
<td>31</td>
<td>523</td>
<td>16.9</td>
<td></td>
</tr>
<tr>
<td>Sand and flint-tempered ware</td>
<td></td>
<td>17</td>
<td>195</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>Flint and iron oxide-tempered</td>
<td></td>
<td>11</td>
<td>101</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>Glaucnitic sandy ware</td>
<td></td>
<td>9</td>
<td>67</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>Grog and iron oxide-tempered ware</td>
<td></td>
<td>9</td>
<td>36</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Sand and grog-tempered ware</td>
<td></td>
<td>8</td>
<td>101</td>
<td>12.6</td>
<td></td>
</tr>
<tr>
<td>Sand and shell-tempered ware</td>
<td></td>
<td>3</td>
<td>26</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>Calcareous ware</td>
<td></td>
<td>2</td>
<td>34</td>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td>Amphora</td>
<td></td>
<td>1</td>
<td>36</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>Sub-total</td>
<td></td>
<td>642</td>
<td>8527</td>
<td>29.9</td>
<td>13.3</td>
</tr>
<tr>
<td>Latest Iron Age–Early Romano-British</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidised ware</td>
<td></td>
<td>16</td>
<td>257</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td>Whiteware</td>
<td></td>
<td>6</td>
<td>36</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Greyware</td>
<td></td>
<td>32</td>
<td>463</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>Sandy ware</td>
<td></td>
<td>445</td>
<td>3771</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>Grog-tempered ware</td>
<td></td>
<td>341</td>
<td>3622</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>Savernake-type ware</td>
<td></td>
<td>235</td>
<td>5381</td>
<td>22.9</td>
<td></td>
</tr>
<tr>
<td>Flint-tempered ware</td>
<td></td>
<td>115</td>
<td>932</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>Sand and grog-tempered ware</td>
<td></td>
<td>34</td>
<td>383</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>Sand and flint-tempered ware</td>
<td></td>
<td>19</td>
<td>250</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td>Grog and flint-tempered ware</td>
<td></td>
<td>6</td>
<td>168</td>
<td>28.2</td>
<td></td>
</tr>
<tr>
<td>Sub-total</td>
<td></td>
<td>1249</td>
<td>15,263</td>
<td>58.2</td>
<td>12.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2145</td>
<td>24,532</td>
<td>11.4</td>
<td></td>
</tr>
</tbody>
</table>
pot-type vessels were common throughout the Middle Iron Age and are well represented at Danebury and Enham Lane (Brown 2000, 90, type PB1; Wessex Archaeology 1997, 42, form R11) where they date to between 350–50 BC. In addition, several coarse shell-tempered body sherds from a further vessel were found which have coarse wipe marks on the outer surface.

Other groups of comparable date comprise those from pits 1552 (40 sherds, 298g) and 1249 (10 sherds, 112g) which both contained examples of nicely burnished, globular bodied jars (Fig. 6.2 & 3), one of which is heavily sooted on the lower two-thirds of the interior. The form of these vessels can be paralleled by Danebury type JC2 (Brown 2000, 87, fig. 3.21). Pit 1249 also contained an upright, externally thickened rim from a round-shouldered jar (Fig. 6.4).

The majority of sherds from pit 1475 (17 sherds, 1660g) are from a tall, narrow, flint-tempered jar with an upright, slightly flattened rim (Fig. 6.5). Although similar vessels occur amongst the Early Iron Age groups at Old Down Farm (Davies 1981, 114, fig. 21, 72), the St Catherine’s Hill-Worthy Down style of decoration (see above) on the shoulder of the vessel from pit 1475 is distinctly of Middle/Late Iron Age date (Cunliffe 1978, 46 and fig. A15). Pit 1219 also contained sherds from a decorated bowl (Fig. 6.6) that has a compound leaf impression on the exterior close to the base, and a necked jar (Fig. 6.7) with tooled diagonal lines on the shoulder comparable to jars found at Danebury (Brown 2000, 87, type JD3, fig. 3.24 and 25).

Groups more characteristic of the Late Iron Age include those from pit 1450 (27 sherds, 520g) and ditch 1606 (168 sherds, 1757g). Pit 1450 contained a necked jar/bowl in a coarse shell-tempered fabric with tooled zig-zag motif on the shoulder (Fig. 6.8). This form is paralleled at Danebury (Brown 2000, 89, type BD2, fig. 3.33). The large group from ditch 1606 contained a broad range of ware types including the one sherd of Mediterranean amphora and an increased number of grog-tempered sherds that comprise 13% (by count) of the ditch assemblage. This is in contrast to the pits discussed so far that contained no grog-tempered sherds at all. Forms include jar/bowls with upright rims (Fig. 6.9), straight-sided jars, necked jars but most commonly bead rim jars, such as a high-shouldered example sooted on the lower part of the interior (Fig. 7.10).

Latest Iron Age–early Romano-British
The majority of the pottery (59% by sherd count) appears to belong to the immediate pre- and/or post-conquest period. The condition of the material is moderately good, with a mean sherd weight of 12.2g (Table 2).

No imported vessels are present. A small quantity of unsourced ‘Romanized’ wares were recorded and comprise oxidised wares and whitewares. The oxidised sherds include fragments from a jug/flagon found within enclosure ditch 1607 (Fig. 8.16, see below). The whitewares comprise six worn and abraded undiagnostic body sherds.

Overall, the latest Iron Age–Romano-British assemblage is dominated by local handmade, predominantly unoxidised coarsewares (98% by sherd count), although some wheel thrown examples probably of later 1st century AD date are also present. The hard fired, grog-tempered Savernake-type wares are also relatively common and may have originated from kilns to the west of Swindon (Anderson 1979). These kilns have been suggested as sources for other hard-fired, grog-tempered fabrics recorded elsewhere in Hampshire, such as at London Road, Overton (Lyne 2012, 154) for example. Bead rim jars are the most prevalent form, and are present in all the coarseware fabrics. Other diagnostic forms include a small quantity of necked jars/bowls with everted rims and three possible lids/lid-pulls, one (in a sand and grog-tempered fabric) decorated with tooled lines on the outer surface (enclosure ditch 1607). Three imitation Gallo-Belgic platter sherds which can be dated to the mid-1st century AD were also recovered (e.g. Fig. 8.18 & 21). Overall, the vessels are well-finished and often burnished or smoothed. Decoration is not common, and where present, it is restricted to tooled or burnished linear motifs.

Distribution
The material was derived from 35 contexts, but only seven contained more than 50 sherds. The majority (68% by count) came from ditch
fills with the remainder (32%) found in pits. Amongst the 168 sherds, weighing 1757g, recovered from ditch group 1608 are several nicely burnished vessels including bead rim jars (e.g. Fig. 7.11 & 12) and a high-shouldered jar/bowl (Fig. 7.13). One flint-tempered globular-bodied jar/bowl (Fig. 7.14) is decorated with tooled cross-hatched line decoration on the shoulder. Pit 1460 (120 sherds/3438g) contained a nicely finished globular jar (Fig. 7.15) along with many sherds from a large storage jar, both vessels in a Savernake-type ware. Chronologically, both of these groups could span the pre- and post-conquest period.

By far the largest group came from enclosure ditch 1607 (644 sherds, 6165g). This group is most likely to be of immediately post-conquest date considering the greater number of definitely Romanized wares present. It includes 12 oxidised ware sherds from an unusual jug/flagon (Fig. 8.16). The vessel has a wide diameter, an everted (almost flattened) rim, and handle on the shoulder. It is most probably of fairly local manufacture. Other forms include a very worn greyware cup/bowl (Fig. 8.17) decorated with burnished zig-zag lines on the neck area and an imitation Gallo-Belgic platter (Fig. 8.18). Amongst the unoxidised coarsewares is a wheel-thrown, thin-walled, shouldered jar in a sandy ware (Fig. 8.19), as well as numerous necked jars or bead rim vessels (e.g. Fig. 8.20) in a range of fabrics. Pit 1361 (235 sherds, 2381g) is also likely to be of comparable date based on the presence of a further imitation Gallo-Belgic ware platter (Fig. 8.21), whilst several other sherds from this pit are from a grog-tempered necked storage jar (Fig. 8.22).

Altogether, there is nothing to suggest that the date range for these wares extends beyond the later part of the 1st century AD. The assemblage finds parallels with the phase 6 pottery from Old Down Farm (Davies 1981, 136, fig. 37) and with that found along the Barton Stacey to Lockerly Pipeline (De’Athe 2013a & b), for example.

List of illustrated vessels (Figs 5–8)

Early Neolithic

Fig. 5.1 PRN 12, Plain, slightly flattened rim (form R3), flint-tempered ware (fabric F1), context 1387, pit 1388
Fig. 5.2 PRN 14, Plain, rounded rim (form R4), flint-tempered ware (fabric F1), context 1386, pit 1388
Fig. 5.3 PRN 9 and PRN 10, Carinated bowl with rolled over rim (form R1), sandy ware (fabric Q1), context 1384, pit 1388

Iron Age

Fig. 6.1 Straight sided jar, sandy ware, context 1215, pit 1210
Fig. 6.2 Globular bodied jar, flint-tempered ware, context 1555, pit 1552
Fig. 6.3 Globular bodied jar/bowl, sand and flint-tempered ware, context 1250, pit 1249
Fig. 6.4 Upright, externally thickened rim, sand and flint-tempered ware, context 1250, pit 1249
Fig. 6.5 Tall, round shouldered jar, decorated, flint-tempered ware, context 1482, pit 1475
Fig. 6.6 Bowl, decorated, flint-tempered ware, context 1224, pit 1219
Fig. 6 Iron Age pottery (nos 1–9)
Fig. 6.7 Necked jar, decorated, flint-tempered ware, context 1220, pit 1219
Fig. 6.8 Necked jar/bowl, decorated, shell-tempered ware, context 1454, pit 1450
Fig. 6.9 Upright rim from jar/bowl, sand and grog-tempered ware, contexts 1255/1258, ditch 1606
Fig. 7.10 Bead rim jar with high shoulder, flint-tempered ware, context 1240, ditch 1606

Fig. 7 Iron Age (no 10) and latest Iron Age–Early Romano-British pottery (nos 11–15)
Latest Iron Age–Early Romano-British

Fig. 7.11 Bead rim jar/bowl, flint-tempered ware, context 1391, ditch 1608

Fig. 7.12 Bead rim jar, Savernake-type ware, context 1415, ditch 1608

Fig. 7.13 High-shouldered jar/bowl, sandy ware, context 1443, ditch 1608

Fig. 8 Latest Iron Age–Early Romano-British pottery (nos 16–22)
Fig. 7.14 Globular bodied jar/bowl, decorated, flint-tempered ware, context 1443, ditch 1608
Fig. 7.15 Bead rim, globular jar, Savernake-type ware, context 1466, pit 1460
Fig. 8.16 Jug/flagon, oxidised ware, context 1519, ditch 1607
Fig. 8.17 Cup/bowl, decorated, greyware, context 1382, ditch 1607
Fig. 8.18 Imitation Gallo-Belgic platter, sandy ware, context 1491, ditch 1607
Fig. 8.19 Shouldered jar, sandy ware, context 1519, ditch 1607
Fig. 8.20 Bead rim jar, sandy ware, context 1382, ditch 1607
Fig. 8.21 Imitation Gallo-Belgic platter, greyware, context 1363, pit 1361
Fig. 8.22 Storage jar, grog-tempered ware, context 1363, pit 1361

Other finds by Elina Brook

Copper alloy
A copper alloy rod fragment (ON 2) was found within the upper fill of enclosure ditch 1606. It was oval in cross section with a number of indentations on both flat parallel surfaces, but it is of uncertain function. Rod fragments with varying sections were found at Danebury within contexts of Middle–Late Iron Age date (Cunliffe 1984, 346), and it is thought that some may have been from nails or rivets. The second object is a complete simple one-piece/Nauheim derivative brooch (ON 3, Fig. 9) from Late Iron Age–Romano-British pit 1361. The bow is decorated with three transverse grooves at its mid-point. These brooches date to the 1st century AD, dying out in the pre-Flavian period (Crummy 1983, 7).

Illustrated copper alloy

Fig. 9 Copper alloy simple one piece/Nauheim derivative brooch, ON 3, context 1363, pit 1361

Iron
Fragments from four iron objects were found. Pieces associated with Middle–Late Iron Age features include an S-shaped rod/shank fragment (ON 1; ditch 1606) of uncertain function and a fragment of a corroded object from pit 1416. Late Iron Age–Romano-British pit 1350 contained two nails; one was almost complete with a domed head, the other was a shank fragment only.

Slag by Phil Andrews

The excavation produced 2.67kg of slag and related debris from five contexts. Two pieces of
iron smelting slag (0.3kg) were found in ditch group 1608 and pit 1460, while an undiagnostic droplet fragment came from post-hole structure 1605. These, along with a small fragment of possible furnace lining (see fired clay below), indicate that some ‘low-level’ iron-working, probably smelting, was undertaken in the vicinity during the Late Iron Age–Romano-British period.

The remaining fragments (2.37kg) were fuel ash slag, pale grey in colour, light in weight and extremely vesicular. The majority of this was recovered from Middle Iron Age pit 1249, with a single fragment found in D-shaped enclosure ditch 1606. This material is most likely non-metallurgical in origin and probably derived from the vitrification of clay (Bayley et al. 2001, 21).

Briquetage, fired clay and ceramic building material

A single abraded, undiagnostic piece of briquetage was found within Middle Iron Age pit 1210. It is in a predominantly oxidised, organic and slightly sandy fabric. Large quantities of briquetage were found at Danebury, the sources of which are thought to have been the salt-producing sites along the Dorset and Hampshire coasts (Poole 1984, 429).

The fired clay assemblage (72 pieces, 2627g) derived from 21 contexts. The majority consist of small, abraded, featureless fragments in a variety of slightly sandy, predominantly oxidised fabrics, some with abundant, large chalk inclusions. The dating of all pieces relies on associated material. Several pieces have flattish surfaces, sometimes heavily sooted, which suggests they may derive from the linings of ovens, kilns or hearths. Fragments from Middle Iron Age pit 1249 had possible withy impressions indicating the presence of some structural debris. One piece from enclosure ditch 1608 had a very glassy, vitrified surface and may be a fragment of furnace lining. Part of a perforated, but unidentifiable, object was found in Late Iron Age–Romano-British pit 1460.

Twelve of the 15 fragments of CBM were abraded, featureless pieces found in post-hole group 1605 and post-medieval quarry pit 1280. Based on its thickness, one abraded, flat fragment from Late Iron Age–Romano-British pit 1350 may possibly be of Romano-British date. The remaining flat fragments (quarry pit 1280) are probably derived from post-medieval roof tiles.

Stone and burnt flint

A single fragment from a Greensand quern of uncertain form came from Late Iron Age ditch 1606.

A large quantity of burnt, unworked flint was recovered, totalling 286kg. This was found within 102 contexts (45 features) with a site-wide distribution. This material type is intrinsically undatable, but is frequently associated with prehistoric activity and in this instance largely derived from the Iron Age and early Roman features. Particularly large quantities came from enclosure ditches 1606 (45.5kg) and 1607 (47.4kg), rectangular enclosure ditch 1608 (76.6kg), pit 1328 (24.6kg) and pit 1259 (14.4kg).

Human bone by Kirsten Egging Dinwiddy

Analysis was undertaken on human bone recovered from three pits and an enclosure ditch (five contexts), ranging in date from Middle Iron Age to Late Iron Age/Early Romano-British. The assemblage comprises the remains of an in situ pit burial and redeposited bone (Table 3).

Methods

Analysis was undertaken using standard methodologies for age and sex assessment (Bass 1987; Beek 1983; Buikstra & Ubelaker 1994; Scheuer & Black 2000). Bone condition was recorded after McKinley 2004 (fig. 6.1–7).

Results

Most of the assemblage was recovered from pit fills comprising dumps of material rich in occupation debris. One fragment of bone came from an enclosure ditch (Table 3). None of the material was recognised as human during excavation, it mostly being redeposited with quantities of animal bone. Partial disarticulation of the burial remains in pit 1460 was due to slumping, and the weight of the overlying
Table 3 Human bone: summary of results

<table>
<thead>
<tr>
<th>context</th>
<th>cut</th>
<th>deposit type</th>
<th>date</th>
<th>quantification</th>
<th>age/sex</th>
<th>pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1217</td>
<td>1210</td>
<td>R</td>
<td>MIA</td>
<td>1 bone l.</td>
<td>adult c. 20–35 yr</td>
<td>?male</td>
</tr>
<tr>
<td>1307</td>
<td>1303</td>
<td>R</td>
<td>LIA/ERB</td>
<td>1 frag. s.</td>
<td>adult c. 18–30 yr</td>
<td>calculus; periodontal disease</td>
</tr>
<tr>
<td>1369</td>
<td>1364</td>
<td>R</td>
<td>IA/ERB</td>
<td>3 bones u.l.</td>
<td>neonate c. birth</td>
<td>–</td>
</tr>
<tr>
<td>1464</td>
<td>1460</td>
<td>inh. burial</td>
<td>LIA/ERB</td>
<td>c. 30%</td>
<td>neonate c. 38–40 wk</td>
<td>endocranial new bone; striated bone – rib external surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a) R</td>
<td></td>
<td>a) 3 bones u.</td>
<td>a) neonate c. 38–40 wk</td>
<td>a & b) –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) R</td>
<td></td>
<td>b) 2 bones u.l.</td>
<td>b) foetus c. 26 wk</td>
<td>–</td>
</tr>
<tr>
<td>1465</td>
<td>1460</td>
<td>R</td>
<td>LIA/ERB</td>
<td>3 bones a.</td>
<td>neonate c. birth</td>
<td>–</td>
</tr>
</tbody>
</table>

KEY: R – redeposited; s. – skull, a. – axial skeleton, u. – upper limb, l. – lower limb (skeletal area represented where not all are present); wk – gestational age in weeks, MA – Middle Iron Age, LIA/ERB – Late Iron Age/early Romano-British.
flint nodule layer had caused some crushing. In general, the assemblage is in excellent condition (grade 0), with some surfaces lightly eroded and/or root etched (up to grade 2). Overall, fragmentation is slight.

A minimum of five individuals (a foetus, three neonates and an adult) is represented in the assemblage.

Dental calculus (calcified plaque/tartar) was observed as slight to moderate tide marks at and below the gum line of all three teeth in the adult dentition. Several factors are involved in the formation of calculus, including an alkaline oral environment, a natural predisposition and diet (Hillson 1979; 1986; Lieverse 1999). Non-mineralised plaque, covering these deposits in life, often causes inflammation of the gums (gingivitis) and periodontal disease – resorption of the socket margins (Hillson 1986; Lieverse 1999). Mild bone resorption was observed on the first adult molar socket.

New bone deposits on the remains of a neonate (rib and skull) suggest inflammation of the adjacent tissues, possibly as a result of infection, metabolic deficiency or trauma. Signs of generalised poor mineralisation of this individual’s remains were also noted. The health of such young infants usually reflects that of the mother, though complications pre-, during and immediately following birth may also be contributory.

Discussion

It is not unusual to find redeposited bone from such contexts of this period. The evidence indicates that most of this assemblage was unwittingly incorporated into the deposits (perhaps following accidental disturbance) rather than deliberately curated and/or ‘placed’. Iron Age and Romano-British neonatal remains often derive from non-cemetery contexts, the communities seemingly preferring to bury the very young deceased in domestic/agricultural settings (i.e. the land of the living) (Philpott 1991, 97–102; Scott 1999, 115). Whilst the assemblage and contexts are not unusual, investigation of the nature and circumstances of such deposits contribute to a better understanding of Iron Age and Romano-British mortuary treatment.

Animal bone by L Higbee

The assemblage comprises 2431 fragments (or 20,988kg) of animal bone. The majority of this material was recovered by hand during the normal course of excavation, with an additional small quantity retrieved from the residues of bulk soil samples. Once conjoins and associated bone groups (or ABGs) are taken into account the above falls to just 746 fragments. The assemblage includes material of Early Neolithic, Middle to Late Iron Age and Late Iron Age to early Romano-British date (Table 4).

Methods

The following information was recorded where applicable: species, skeletal element, preservation condition, fusion and tooth ageing data, butchery marks, metrical data, gnawing, burning, surface condition, pathology and non-metric traits. This information was directly recorded into a relational database (in MS Access) and cross-referenced with relevant contextual information.

Results

Preservation conditions

Gnaw marks were evident on only 3% of fragments and bone preservation is generally good, although a few poorly preserved fragments were noted from recut 1607 of D-shaped enclosure 1606. These poorly preserved fragments are probably residual, having been reworked and re-deposited from earlier contexts.

Early Neolithic

Fourteen small fragments of calcined bone were recovered from pit 1388. None of the fragments were identifiable to species or skeletal element.

Middle–Late Iron Age

The Middle to Late Iron Age assemblage comprises 268 fragments of animal bone. The majority (64%) of this material was recovered from pits and the rest from D-shaped enclosure ditch 1606. Differences in the composition of the animal bones recovered from pits and the enclosure ditch were noted. More sheep/goat and horse bones were deposited into pits
than into the enclosure ditch, and the range of species is broader.

Sheep/goat and cattle bones are common and both species are represented by a range of different skeletal elements. Age information is limited but indicates that livestock were selected for slaughter at various different ages – cattle between the ages of 30–36 months to old adult (mandible wear stages (or MWS) E to H; after Halstead 1985), and sheep/goat between one to eight years (MWS D to H; after Payne 1973). Only one pig bone, the distal part of a humerus, was recovered from pit 1210.

Horse bones are a common component in the assemblage and the majority came from pits, in particular 1416 which contained a group of ten post-craniad bones many of which show signs of butchery. Cut marks consistent with both skinning and disarticulation were noted on several of the bones including the mandible, scapula, humerus, femur and metatarsal. Butchered horse bones are not uncommon on sites of this period and have previously been noted from the Iron Age enclosure at Bury Hill, Upper Clatford to the south of Andover (Hamilton 2000, 71).

Four dog bones were recovered from the site they include a pelvis from the enclosure ditch, and fragments of tibia and mandible from three separate pits. Cut marks were noted on the tibia and these marks are consistent with disarticulation of the foot during the process of skinning the animal for its pelt.

Red deer is represented by a large piece of poorly preserved antler from pit 1552. There is faint evidence on the base of the beam that it had been cut through with a saw. A fragment of radius from a greylag goose came from enclosure ditch 1606.

Late Iron Age–early Romano-British

A total of 464 fragments of animal bone were recovered from contexts of Late Iron Age to early Romano-British date. Of this, 63% came from enclosure ditches 1607 and 1608, and the rest came from pits. There is little overall difference in the composition of the material recovered from the two main feature types.

The assemblage is dominated by bones from livestock species, in particular cattle and sheep/goat. Both species are represented by a range of different skeletal elements and this evidence suggests that livestock were slaughtered and consumed locally. The types of skeletal elements recovered from ditches are mostly waste elements from primary butchery, while the nature of the pit assemblages is more typical of domestic refuse. This type of basic spatial patterning has been noted at other sites (see for example Wilson 1996). Three deposits of cattle bone are worthy of note – a group of articulated and semi-articulated cattle bones on the base of pit 1299 and skulls in the terminal ends of the ditches forming part of the north-eastern extent of enclosure 1608.

The cattle remains in pit 1299 (Fig. 10) comprise the articulated axial skeleton (i.e. skull, spinal column, ribs, sacrum and pelvic girdle) from an adult animal (MWS G). This was deposited together with three right mandibles and one left mandible from four separate cattle, two of a similar age to the articulated remains, one a younger animal aged between 30–36 months and the other an old adult (MWS E and H). Disarticulated long bones from the fore- and hind-quarters lay scattered either side of the central articulated remains and these are from at least three separate animals. The skulls were in the upper fill sequence of the ditch terminals, both were from adult animals and one (from slot 1437, the most northerly ditch terminal) had cut marks across the frontal part of the skull from skinning. The horn cores of this animal had also been removed indicating that cattle horn was utilised.

Age information from epiphyseal fusion indicates that cattle and sheep were generally slaughtered when skeletally mature, although bones from calves and lambs were also noted and this indicates, perhaps unsurprisingly, that livestock were locally reared. Tooth wear data from 12 complete mandibles indicated that most cattle were slaughtered between the ages of 30–36 months and adulthood, or as old adults (MWS E, G and H; after Hambleton 1999). The age profile suggests that secondary products such as milk, manure and traction were more important to the economy of the site than the production of prime beef. The tooth wear data for sheep/goat confirms the fusion data and shows the presence of animals aged between one to six years.
Pig bones were extremely scarce but include several mandible fragments, loose teeth and a few post-cranial bones. Three complete mandibles were recovered and these are from two 14–21 month old animals and a slightly older animal aged 21–27 months (MWS D and E).

Disarticulated horse bones and teeth were recovered from a number of features, most occurring as isolated bones in individual features, however a small group of long bones from pit 1299 appear to have come from the same individual. A metatarsal from enclosure ditch 1607 is from a juvenile animal and this evidence suggests that the breeding and rearing of horses was also part of the site economy.

Two disarticulated dog bones were recovered from enclosure ditch 1607, and the articulated remains of a small adult dog were recovered from the terminal of enclosure ditch 1607.

Conclusions

Detailed comparisons with other Iron Age sites in the local area were not attempted due to the small overall size of the assemblage (see for example Hambleton 1999, 39–40). In general terms the livestock economy in the Iron Age and early Romano-British period in the Wessex region was predominately based on sheep-farming (Cunliffe 1991; Hambleton 1999, 46). Sheep bones are a major component of the animal bone assemblage from Shepherds Spring but so are cattle bones, particularly during the final phase of activity, however a general increase in the relative importance of cattle has been noted elsewhere in the region.
during the Late Iron Age to early Romano-British period.

The animal bone deposits in pit 1299 and the terminals of enclosure ditches 1607 and 1608 are the result of deliberate deposition and as such they stand out from the random accumulation of disarticulated bone waste. Deposits of a similar nature have been recorded in pits and ditch terminals on a variety of Iron Age and Romano-British sites in southern Britain and elsewhere (Morris 2011).

Environmental evidence by Sarah F Wyles

A total of 22 bulk samples were taken, with one coming from an Early Neolithic pit and seven from ditches, 13 from pits and one from a post-hole all of Middle–Late Iron Age or Latest Iron Age–early Romano-British date. The samples were processed by standard flotation methods for the recovery and assessment of charred plant remains and charcoal.

Preliminary identifications of dominant or important taxa are noted below, following the nomenclature of Stace (1997) for wild plants, and traditional nomenclature, as provided by Zohary and Hopf (2000, tables 3 & 5), for cereals.

The flots varied in size with generally low numbers of roots and modern seeds. The charred material comprised varying degrees of preservation.

Charred plant remains and charcoal

Early Neolithic

The sample from Early Neolithic pit 1388 contained large numbers of hazelnut shell (Corylus avellana) and wood charcoal (round and mature wood) fragments, but no cereal remains. The pattern of the predominance of hazelnut shell fragments appears to be typical for the Neolithic period. This may be indicative of the exploitation and general reliance on these wild food resources at this time (Moffett et al. 1989; Stevens 2007; Robinson 2000).

Middle–Late Iron Age and Late Iron Age–early Romano-British

Large quantities of cereal remains were observed in the flots from eight of the remaining samples from Middle–Late Iron Age ditches 1205 and 1320 (both group 1606), pits 1226 and 1249, and post-hole 1245, and from

Table 4 Number of identified animal bones present (or NISP) by period. Adjusted to take account of ABGs (see text)

<table>
<thead>
<tr>
<th>Species</th>
<th>Early Neolithic</th>
<th>Middle–Late Iron Age</th>
<th>Late Iron Age–early RB</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>cattle</td>
<td>–</td>
<td>37</td>
<td>65</td>
<td>102</td>
</tr>
<tr>
<td>sheep/goat</td>
<td>–</td>
<td>49</td>
<td>45</td>
<td>94</td>
</tr>
<tr>
<td>pig</td>
<td>–</td>
<td>1</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>horse</td>
<td>–</td>
<td>17</td>
<td>19</td>
<td>36</td>
</tr>
<tr>
<td>dog</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>red deer</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>fox</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>greylag goose</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Total identified</td>
<td>–</td>
<td>111</td>
<td>143</td>
<td>254</td>
</tr>
<tr>
<td>Total unidentifiable</td>
<td>14</td>
<td>157</td>
<td>321</td>
<td>492</td>
</tr>
<tr>
<td>Overall total</td>
<td>14</td>
<td>268</td>
<td>464</td>
<td>746</td>
</tr>
</tbody>
</table>
Late Iron Age–early Romano-British ditch 1406 (group 1608) and pits 1460 and 1543. The cereal remains included barley (*Hordeum vulgare*) grain fragments and hulled wheat, emmer or spelt (*Triticum dicoccum/spelta*), grain, glume base and spikelet fork fragments. Some of the glume bases were identifiable as being those of spelt wheat (*Triticum spelta*).

Six of the 21 samples contained high numbers of weed seeds. These were from Middle–Late Iron Age pit 1226 and post-hole 1245, and from Late Iron Age–early Romano-British ditch 1406 (group 1608) and pits 1460 and 1543. The weed seed assemblages included seeds of vetch/wild pea (*Vicia/Lathyrus* sp.), oats/brome grass (*Avena/Bromus* sp.), narrow-fruited cornsalad (*Valerianella dentata*), docks (*Rumex* sp.), bedstraw (*Galium* sp.), corn gromwell (*Lithospermum arvense*), rye-grass/fescue (*Lolium/Festuca* sp.), black-bindweed (*Fallopia convolvulus*), goosefoot (*Chenopodium* sp.), ribwort plantain (*Plantago lanceolata*) and clover/medick (*Trifolium/Medicago* sp.). There were also a few fragments of hazelnut shell.

Large quantities of round and mature wood charcoal fragments were also present in Middle–Late Iron Age pits 1210 and 1219, and post-hole 1245.

Generally spelt wheat is the dominant wheat over much of England during the Late Iron Age–early Romano-British period (Greig 1991). The weed seeds are of species typical of grassland, field margins and arable environments, and the assemblages are likely to be indicative of general settlement activity. They are comparable with other plant assemblages in the area such as Old Down Farm (Davies 1981) and Lain’s Farm (Carruthers 1992).

DISCUSSION

Excavations in and around Andover have produced evidence for activity since the Mesolithic period, and the site at Shepherds Spring School is located close to known Iron Age and Romano-British settlements and route-ways. Four phases of activity were identified during the excavation: Early Neolithic, Iron Age, Middle–Late Iron Age–early Romano-British, and post-medieval.

Early Neolithic

During the Early Neolithic period short-lived, possibly seasonal activity occurred on the site and is represented by a small bowl-shaped pit that contained an important and rare (for Hampshire) assemblage of Early Neolithic Carinated Bowl pottery, of early 4th millennium date, and worked flints. Neolithic features have
been recorded at other sites within Andover such as Enham Lane (1km to the west), where Early Neolithic pottery and worked flints were recovered from an irregularly shaped hollow (Wessex Archaeology 1997), but the Shepherds Spring School assemblage is more substantial and, therefore, of greater significance. However, though rich in hazelnut shells and wood charcoal it contained no charred cereal remains or weed seeds. Late Neolithic features are more widely recorded in Andover and examples are known from Old Down Farm (Davis 1981), Balksbury (Wainwright & Davies 1995), Goch Way (Wright 2004) and East Anton (Firth 2013).

Earlier work at Balksbury Camp, which occupies a low spur of downland above the confluence of the River Anton and the Pill Hill Brook, indicated that during the Neolithic it was covered in dense woodland and was ideally placed to exploit various ecological zones (Wainwright & Davies 1995). Given the similar setting of the site at Shepherds Spring School, on a spur overlooking the confluence of the River Anton and its western tributary, it would seem also to have provided an attractive location for groups exploiting the river valleys and downland.

Iron Age to early Romano-British

The presence of Iron Age and Romano-British features and settlement evidence has been recorded in the immediate vicinity of the site on excavations and watching briefs from the 1970s. It was during these periods that the first substantial settlement at the site began. Between the Middle Iron Age and early Romano-British periods enclosures with associated structures and storage pits were established. The earliest phase, a D-shaped enclosure ditch, was constructed between the 2nd to 1st centuries BC and contained pottery that spanned the Middle to Late Iron Age. In the Late Iron Age–early Romano-British (1st century BC to 1st century AD) period the existing D-shaped enclosure was extended towards the north-east by a large rectilinear enclosure and was partially re-cut along its eastern edge. The later rectilinear enclosure had an entrance on its south-eastern side, with the majority of the enclosure lying beyond the northern boundary of the site. The Middle Iron Age to early Romano-British features may form the southern limit of settlement recorded during construction of the Genoa Court housing estate in the 1970s (Cook & Dacre 1985).

The enclosure ditches had relatively deep V-shaped profiles and the lack of immediately adjacent contemporary features may indicate the location of an internal bank. The enclosure ditches and associated bank would have formed substantial landscape features occupying the flat ground on a spur above the River Anton. It is during the Middle Iron Age that enclosed settlements started to emerge (Haselgrove *et al.* 2001), and the enclosure at Shepherds Spring School conforms to this pattern. The settlement would have been contemporary with other Iron Age sites in Andover including Balksbury (Wainwright & Davies 1995), Old Down Farm (Davis 1981), Enham Lane and Knights Enham (Wessex Archaeology 1997; unpublished, Stoodley 2013). Occupation at the site spanned the Middle Iron Age to early Romano-British period, and it has been shown that the longevity of occupation at Iron Age sites appears to relate to the number of easily accessible ecological zones (Cunliffe 1984). The Shepherds Spring School site was part of a wide network of Iron Age settlements across the Wessex Downs and was well placed to exploit various ecological zones and access route-ways and water courses (Palmer 1984).

Evidence for structures was limited to a single possible ring- or drip gully and a post-built structure. Both contained very limited datable material, but this included Middle to Late Iron Age pottery. It is possible that further settlement features lie to the north of the excavated site and that the area investigated was predominantly utilised for pit digging. The pits varied in shape and size, and contained a mixture of natural silt and deliberate backfills. Their associated artefact assemblages comprised domestic debris including pottery, animal bone and burnt flint but, for example, no spinning or weaving equipment, as well as redeposited human remains. Articulated cattle remains were placed on the base of pit 1299 and a spread of charcoal-rich material was recorded on the base of 1219.
Within pit 1460 a probable disturbed neonatal inhumation was recorded below a deposit of flint nodules. Similar depositional practices have been recorded locally at Enham Lane (Wessex Archaeology 1997) and Viking Way (Weaver 2002). Human remains are frequently found within storage pits, either as complete bodies, in some cases placed on the base of the pit, or as fragmented or dismembered bodies or skulls (Cunliffe 2000), and the evidence from Shepherds Spring School provides further evidence of this tradition. Structured deposits within pits are widely recorded on Iron Age sites and have been discussed by Hill (1995) and Cunliffe (2000), and it is probable that complex factors lie behind such deposits.

Spelt wheat is, as expected, common in the charred plant assemblage, which is typical of general settlement activity. The weed seeds are of those of grassland, field margins and arable environments, and this pattern is also shown by the species of molluscs which are mostly those of a generally well established open landscape.

The enclosure ditches seem to have been abandoned at some point during the Late Iron Age–early Romano-British period, probably in the later part of the 1st century AD. The reasons for the abandonment are unclear, but may be associated with the establishment of the Portway Roman road that crossed the site from north-east to south-west, perhaps at the same time as the crossroads settlement, thought to have been a small Roman town, known as Leucomagus, developed at East Anton. Deposition within the upper layers of the ditch indicates possible deliberate backfilling with large quantities of burnt flint, gravel and charcoal-rich deposits identified, prior to the gravel road surface being laid and the associated roadside ditches dug.

ACKNOWLEDGEMENTS

Wessex Archaeology would like to thank Duncan Hawkins from CgMs Consulting for commissioning the work. The assistance of Phil Usher, of Abbey Homes, during the course of the fieldwork is also greatly appreciated. Finally, we would like to acknowledge David Hopkins, County Archaeologist, Hampshire County Council, for his comments and advice.

The project was managed for Wessex Archaeology by Andrew Crockett. The fieldwork was directed by John Powell and Simon Flaherty, assisted by Andy Sole, Peter Capps, Jamie McCarthy, Oliver Good, Tom Blencowe, Angus Forshaw, Ed Grenier and Rachael Williams.

In addition to the contributing specialists, Alistair Barclay and Rachael Seager Smith commented on the pottery, Elizabeth James drew the site figures and Nancy Dixon the finds, and Phil Andrews and Philippa Bradley edited the report. The archive is currently stored at the offices of Wessex Archaeology under the project code 103100–1, but will be transferred to the Hampshire Cultural Trust under accession number A2014.33 in due course.

REFERENCES

British Geological Survey, online viewer: http://
mapapps.bgs.ac.uk/geologyofbritain/home.html.

Cunliffe, B 1978 Iron Age Communities in Britain: an account of England, Scotland and Wales from the seventh century BC until the Roman conquest, London.

De’Athe, R 2013a Early Iron Age metalworking and Iron Age/early Romano–British settlement evidence along the Barton Stacey to Lockerley gas pipeline, Proc Hampshire Fld Club Archaeol Soc 68 29–63.

Firth, E 2013 Excavations at East Anton, Andover, Hampshire, Archaeological Assessment Report, unpubl client report (ACW209/1/1).

Garrow, D, Beadsmoore, E & Knight, M 2005 Pit clusters and the temporality of occupation: an earlier Neolithic site at Kilverstone, Thetford, Norfolk, Proc Prehist Soc 71 139–57.

Garrow, D, Lucy, S & Gibson, D 2006 Excavations at Kilverstone, Norfolk: an episodic landscape history (East Anglian Archaeol 113), Cambridge.

Harding, P forthcoming Excavations at Reydon Farm: Early Neolithic pit digging in East Suffolk, Proc Suffolk Inst Archaeol Hist.

Hillson, S W 1979 Diet and dental disease, World Archaeology II (2) 147–62.

McKinley, J I 2004 Compiling a skeletal inventory: disarticulated and co-mingled remains, in Brickley, M & McKinley, J I (eds) Guidelines to the Standards for Recording Human Remains, British Association for Biological Anthropology and Osteoarchaeology and Institute for Field Archaeology, 13–16.

Thomas, J 2013 The Birth of Neolithic Britain, An Interpretive Account, Oxford.

Rivet, A L F & Smith, C 1979 The Place-Names of Roman Britain, London.

Stevens, C J 2007 Reconsidering the evidence: towards an understanding of the social contexts of subsistence production...
APPENDIX 1 POTTERY FABRIC DESCRIPTIONS

F1: A moderately soft fabric containing rare (1%), poorly sorted, sub-angular flint (<8mm) and rare (1%), sub-rounded iron oxides (<1mm) in a silty matrix.

Q1: A soft fabric containing common (25%), moderately sorted, sub-rounded, quartz sand (<3mm), rare (1%), poorly sorted, sub-angular flint (<5mm) and rare (1%), sub-rounded iron oxides (<1mm).

Q2: A soft fabric containing moderate (10%), poorly sorted, rounded quartz sand (0.25–1mm) and moderate (10%), well-rounded black grains, possibly glauconite (0.25–0.5mm).

Q3: A moderately soft, laminar fabric containing sparse (7%), poorly sorted, sub-rounded quartz sand (<1mm) and rare (1%), poorly sorted, sub-angular flint (<3mm).