A MIDDLE IRON AGE SETTLEMENT AT WESTON DOWN COTTAGES, WESTON COLLEY, NEAR WINCHESTER, HAMPSHIRE

By Catriona Gibson and Stephanie Knight (also animal bone) with contributions from Lorraine Mepham (pottery), Michael Allen (soils, plant economy, snails), Sheila Hamilton-Dyer (small mammal, bird and amphibian bones), Jacqueline I. McKinley (human remains), Matt Leivers (small finds), Jörn Schuster (brooch), Chris Stevens (charred plant remains), Catherine Chisham (wood charcoal), Nicholas Cooke (coins) and Elizabeth James (illustrations).

ABSTRACT

The excavation at Weston Down Cottages, just north of Weston Colley, formed part of a mitigation strategy for construction of a gas pipeline and revealed the presence of an Iron Age settlement. This comprised a large concentration of bell-shaped and other pits, associated with roundhouses, and a series of ditches, predominantly aligned NE–SW. Geophysical survey showed that the site formed part of an extensive Iron Age complex that included a D-shaped, banjo and rectangular enclosure with associated trackways and field systems.

The site was predominantly occupied during the Middle Iron Age. The features and finds suggest small-scale rural settlement and associated industrial activities. Some of the pits contained exceptionally high quantities of burnt flint, associated with daub and small quantities of slag, relating to a number of different activities, including pot-making. Over 60 bell-shaped or beehive storage pits were revealed, implying storage of grain. Several pits contained articulated animal remains, including a legless horse and a complete dog, concurring with patterns noted at other Iron Age sites where storage features become repositories for structured deposits that undoubtedly had complex meanings. The site was probably occupied by one or two households and may have been relatively long-lived. A cremation burial was radiocarbon dated to the Middle Bronze Age. Two inhumation burials were revealed adjacent to an Iron Age boundary ditch, and both were radiocarbon dated to the Middle Iron Age. After the Middle Iron Age, the site was abandoned for several hundred years. In the early Romano-British period, elements of the Iron Age landscape were reused and adapted. Later

Romano-British features identified include a corndrier placed centrally within an Iron Age trackway. The Romano-British features and finds are indicative of predominantly rural activities of agricultural nature, with settlement in the vicinity.

INTRODUCTION

Wessex Archaeology was commissioned by Penspen on behalf of Star Energy to undertake a programme of archaeological mitigation for the construction of a gas transfer pipeline between Humbly Grove Oilfield and Bullington Cross, Hampshire, at the eastern and western end of the pipeline respectively. This paper presents the results of an excavation carried out at Weston Down Cottages, just north of Weston Colley. Remains of a rural settlement, predominantly dating to the Middle Iron Age, were identified. Elements of the Iron Age landscape were reused and adapted in the early Romano-British period, indicating rural settlement in the vicinity.

Site location

The site (centred on NGR SU 49750 41130) is located on a relatively flat plateau on the Upper Chalk, which rises gently from west to east from c. 85 m – 89 m aOD. It is situated c. 1.2 km to the north of the Iron Age hillfort of Norsebury Ring, and c. 1.6 km to the north of the meandering River Dever, a west flowing tributary of the river Test. This location provided access to three resource zones: open downland, woodland and

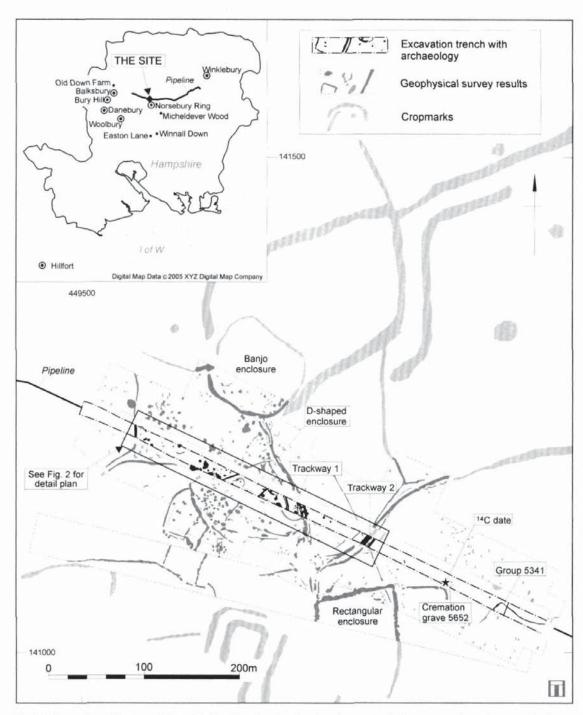


Fig. 1 Weston Down Cottages, Weston Colley. The site; also showing the geophysical survey results and cropmarks. Inset, the site in relation to other Iron Age enclosed settlements and hillforts in the vicinity

river valley flood plain. It was within this topographical zone that the hillforts of Danebury, Woolbury and Balksbury emerged (Fig. 1), situated within the hub of natural corridors of communication between the Salisbury Plain, Cranborne Chase, and the North and South Downs (Cunliffe 2000, 194).

Background

Archaeological mitigation included a desk-based assessment, extensive geophysical survey, and a series of evaluation trenches (Wessex Archaeology 2004). This work allowed the pipeline route to be designed to minimise the impact on the archaeology. However, at Weston Down Cottages (hereafter Weston Down), the pipeline unavoidably crossed a dense and extensive zone of archaeology, as identified from the cropmarks and geophysics, which suggested the presence of an Iron Age settlement. This comprised a rectangular enclosure with internal pits and structures, a banjo enclosure and possible trackways linking the two enclosures, associated with a field system.

The pipeline was orientated in such a way that it would minimise the impact, through traversing the zone between the two enclosures, where only trackways had been identified. An excavation area measuring 520 m long and 12 m wide was opened, covering the full impact zone, including pipeline easement. An average of 0.25 m–0.30 m of undifferentiated topsoil/subsoil overlay Upper Chalk deposits. This ploughsoil reflects the recent arable use of the land and had resulted in some truncation of archaeological features, particularly in the western part of the site.

Some two hundred features were identified within the site. Most of these were well-preserved, and the majority produced datable material. Since the northern sector of the site was most affected by the pipeline trench, excavation was focussed upon this area.

The excavation area was too narrow to permit a comprehensive understanding of the nature and layout of the site. A rapid geophysical survey on either side of the excavation strip (GSB 2004/02) allowed it to be placed and

understood within its wider landscape context (Fig. 1) and demonstrated that the features formed part of a D-shaped settlement enclosure with associated trackways, fields and paddocks.

RESULTS

Neolithic

The earliest feature identified was a natural tree hollow (5327) which contained nine decorated body sherds of Middle Neolithic Peterborough Ware pottery in its upper fill (Fig. 2). Three further sherds of Peterborough Ware were also recovered from segments of an adjacent Middle Iron Age ring gully (5324). All of these were body sherds in a coarse flint-tempered fabric and had twisted cord decoration, arranged in rows (Fig. 6.1). The overall profile remains uncertain, but these sherds may have derived from a single vessel.

The bi-lobed nature of feature 5327 suggests that this is a tree hollow, rather than a tree throw (cf. Macphail 1987; Macphail and Goldberg 1990), and therefore that the tree rotted in situ. The large quantity of Peterborough Ware pottery indicates it may have been placed in the hollow prior to its final silting rather than accidentally finding its way into it. (cf. Macphail 1987).

The soil contained a slightly increased clay content towards the base, which is indicative of the formation of an argillic brown earth or forest soil, implying woodland conditions in the immediate vicinity (cf. Fisher 1982). Typical argillic brown earths are recorded from Late Neolithic tree hollows at Balksbury (Macphail 1986; 1995; Allen 1995), and the soil indicates a former long term woodland. Trees were important symbols in the past, being cenotaphs and central places for later activity (see Allen et al. 1995) and often artefact assemblages associated with distinct activities are found in tree hollows or tree throws (Evans et al. 1999).

This was the only Neolithic feature identified on the site, but several Neolithic flints were collected as surface finds or occurred residually in the fills of Iron Age features.

Table 1 Summary of results from analysis of human remains

context	cut	deposit type	$\ quantification$	age/sex	pathology summary
5089	5110	inh. burial	c. 98%	adult c. 35–45 yr. female	caries; abscesses; calculus; fracture – right rib; osteophytes – C1/2 anterior facets, T5–6, T8–S1, right acetabulum, 2 right ribs; pitting – T13 rib facets; exostoses – right rib, patella, calcaneum; vertebral body collapse; morphological variation – mand. M3 5-cusps, wormian bones, ossicle @ lambda, T13
5156	5155	inh. burial	c. 55%	adult c. 30–45 yr. female	caries; calculus; infection – right mandibular canal & body; spondy- lolysis – L4; osteophytes – C1/2 anterior facets; right sacro-iliac; pitting – proximal radii
5297	5296	redep.	0.4g	infant 0–5 yr.	
5654–55	5652	?un. burial + rpd	16.2g	infant ϵ . 4–6 yr.	

Key: Inh = inhumation; un = unurned; rdp = redeposited pyre debris

These included a number of flakes from ring gully 5324 of Structure 4 as well as Structure 3, and pits 5007, 5020, 5560 and 5721. A possible polished stone axe fragment was also recovered from Structure 3. Most of this residual Neolithic material occurred directly west of the treethrow 5327, and the distribution may highlight some level of Neolithic activity within its immediate vicinity. A number of Neolithic flint scatters have been documented in the surrounding environs (Gardiner 2002, 5), and a possible henge monument has been identified from aerial photographs to the south at Norsebury Ring (Denison 1998).

Bronze Age

Two shallow features were dated to the Middle Bronze Age, both relating to mortuary activity, and containing cremated bone. Feature 5652 was a small shallow grave containing a probable unurned cremation burial with redeposited pyre debris (5653–5), in the eastern zone of the site (Fig. 1). The remains were those of an immature individual. Oak from the pyre debris was radiocarbon dated to 1400–1200 cal. BC (NZA–23379: 3043±30 bp; Table 2). This places it in the later part of the Middle Bronze Age.

Shallow pit 5296, in the western part of the site, contained only a few fragments of redeposited cremated bone and pyre debris, again representing the remains of an immature individual, associated with a number of pottery sherds which formed part of a small bossed vessel of coarseware Deverel-Rimbury tradition. The pyre debris contained only a large number of Pomoideae charcoal fragments which are probably hawthorn (*Crataegus monogyna*). It is unusual that hawthorn, and not oak, was used as pyre fuel, although the former does burn well. The hawthorn may represent a pyre offering rather than fuel.

The cremation grave 5652 and pit 5296

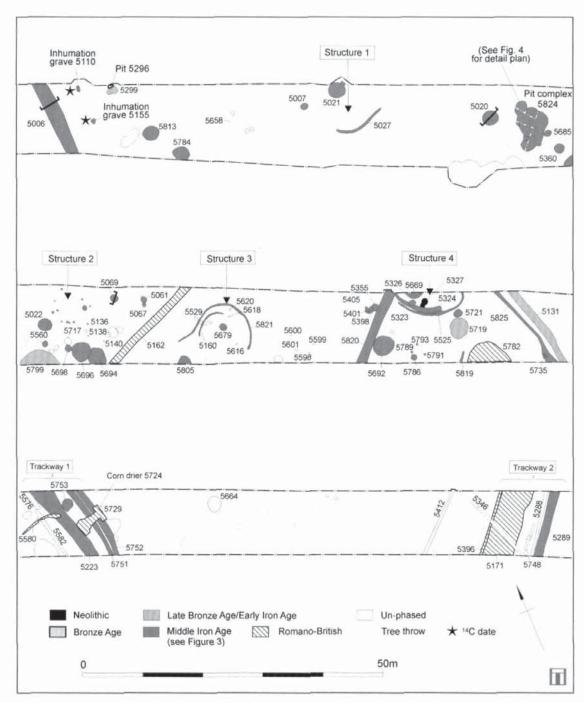


Fig. 2 Overall phase plan of the site

Table 2 Radiocarbon dates for inhumation burials and cremation grave

Feat type	feature	Context	Material	lab no	result no	δC^{I3} ‰	result BP	Cal BC
Grave	5155	5156	Human femur left	R28990/1	NZA-22996	-20.3	2334±35	520-240
Grave	5110	5089	Human femur right	R28990/1	NZA-22997	-20.3	2383±40	760–370
Crem	5654	5652	Oak juvenile charcoal <63>	R-29051	NZA-23379	-25.3	3043±30	1400–1200

appear to be roughly contemporary and contained similarly aged individuals (see Table 1), but the distance between the two renders it highly unlikely that the bone in the two deposits derived from the same individual. The western part of the site has been subject to more plough damage and it is likely the pot in pit 5296 had originally been deposited as a complete vessel. Indeed, a single sherd of Deverel-Rimbury pottery was recovered from Iron Age grave 5110, only 4 m to the east of the pit, and may have originally derived from it.

The cremated bone is uniformly white in colour, indicating a high level of oxidation (Holden et al. 1995a and b). The quantity of bone recovered from grave 5652 is small and, as is common within the mortuary rite, far from representative of the total remains which would have survived at the end of cremation, but is within the range of weights often recovered from the burials of infants. Fragment size, as may be expected with an individual of this age, is relatively small, with a maximum size of 22 mm. There is no indication of deliberate fragmentation of bone prior to burial. All skeletal areas are represented amongst the identifiable bone (50% of total weight), the majority of which (84%) are elements of skull. This apparently high proportion may be misleading in that skull elements are easier to identify and the absence of most of the trabecular bone (axial skeleton, long bone epiphyses etc.) is likely to be a taphonomic rather than a cultural factor.

Iron Age

A small number of sherds from 'red-finished' bowls, and some more coarsely flint-tempered vessels, in the absence of diagnostic forms, could be of Late Bronze Age or Early Iron Age date. Pits 5719 and 5799 and ditch 5131 only contained fineware sherds, as well as a cordoned carinated bowl from pit 5719 (Fig. 6.2).

Most features proved to be of Middle Iron Age date (hereafter MIA). It was during this period that boundaries and enclosures were established, a large number of deep storage and other pits dug and at least four circular structures built.

As a result of the considerable body of work undertaken on pottery assemblages across Hampshire (Cunliffe 1984, 244-8; Brown 1995a; Morris 1995a), it has become possible to refine the phasing on Middle Iron Age assemblages, on the basis of form and fabric. Some of the MIA vessel forms have a date range spanning the period, while others can be assigned either to the early part of the period (convex saucepan pots: ceramic phases 4-5 at Danebury: Cunliffe 1984) or to the later part (straight-sided saucepan pots: cps 6-7). The everted rim jar form with tooled arcs (Fig. 6.11) can be placed at the end of the period. Another chronological trend noted at Danebury (although not at the contemporaneous site at Suddern Farm: Brown 2000) was the increase in the proportion of flint-tempered fabrics at the expense of sandy fabrics through the period.

Using this chronological framework, it has been possible to assign some of the MIA features at Weston Down either to MIA1 (6th–4th century BC) or MIA2 (4th–2nd century BC). Table 3 presents the pottery totals, with diagnostic vessel forms, for the larger feature groups (yielding more than 20 sherds). Of these 15 feature groups, 13 have been assigned to ceramic phase MIA1 or 2.

It was hoped that this refinement of pottery dating would allow a clearer understanding of the emergence and development of the Iron Age landscape at Weston Down. Some of the field ditches and trackway boundaries, however, produced small quantities of pottery that could only be assigned a broad Middle Iron Age date (Fig. 3). In some cases, the stratigraphic evidence helped to situate them more precisely within the wider context of pits and roundhouses. For instance, ditch group 5820 cuts the silted fill of ring gully 5324 which forms part of Structure 4, implying that this sub-division of the D-shaped enclosure was a later addition, created after the building fell out of use and completely silted up (i.e. probably in MIA2). This ditch was in turn cut by pit 5355, which is also likely to be of MIA2 date. Ditch 5131, which forms a component of Trackway 1, also produced sherds of Early Iron Age pottery suggesting that perhaps this trackway was one of the first elements to be created in the landscape.

Four feature groups could be assigned with confidence to MIA1 (on the basis of pottery and/or stratigraphy), including two pits (5020 & 5022) and Structures 3 and 4 (both the original construction and the second later ring gully – see Fig. 3). Limited diagnostic forms included one barrel-shaped storage jar (form 3) from structure 3, and two convex saucepan pots from pit 5022, but sandy fabrics are overwhelmingly predominant. None of these MIA1 features yielded large quantities of pottery (a range of 22 to 86 sherds per feature), and mean sherd weight overall for this group of features is 5.9 g.

The eleven features assigned to MIA2 were all pits (5021, 5067, 5069, 5326, 5355, 5360, 5560, 5679 & 5721 and 5452 & 5478, both part of pit complex 5824) and generally contained

greater quantities of pottery (32 to 169 sherds per feature), and included more diagnostic forms (mainly straight-sided saucepan pots and convex jars with proto-bead rims) than MIA1 pits. Mean sherd weight for these features is 13.7 g, although it must be noted that these included at least four with 'placed deposits' consisting of large parts of vessels.

The ceramic assemblage at Weston Down potentially spans the 6th to 2nd centuries, with a focus on the 4th and 3rd centuries BC, using the Danebury absolute chronology (Cunliffe 1995, 17). Good parallels for the pottery assemblage were found on other Middle Iron Age sites in Hampshire, including Danebury, Suddern Farm, Old Down Farm and Balksbury Camp. Work on the Danebury assemblage and associated Danebury Environs projects, in particular, has gone a long way towards characterising the ceramic sequence, production and distribution networks, and patterns of discard at this period (e.g. Brown 1995a; Morris 1995a; Poole 1995). The tentative ceramic phasing proposed for Weston Down is based on the revised chronology for the Danebury Environs Project which suggests that certain vessel forms hitherto thought to be confined to earlier Middle Iron Age levels were in fact longer-lived (Brown 1995b). The Weston Down assemblage apparently spans the period from the use of plain, convex saucepan pots and convex jars to the introduction of straight-sided saucepan pots, albeit without the appearance of the highly decorated examples characteristic of the Danebury assemblage during ceramic phases 6

Ditches and Boundaries

The geophysical survey clarified the nature of the various ditches revealed in the excavation area (Fig. 1), relating to enclosures and trackways. The ditches comprising the D-shaped enclosure were c. 1 m wide and 0.6 m deep, while the trackway ditches tended to be wider (ranging from 1.4–3 m in width and 0.3–0.65 m in depth). Both trackways were quite narrow (c. 2.2–2.4 m wide), and neither followed a straight orientation. Trackway 1, which was

Table 3 Pottery by MIA feature group (<20 sherds only)

TOTAL	21/132 26/169	42/257	70/646	30/150	22/116	968/98	35/111	169/2857	42/404	65/587	89/720	58/401	32/232	81/2115
shelly brique- tage						9/1				3/9				
			2/8			16/63						1/4	1/8	
Poole Harbour								2/5	9/41 JB4	2/18	14/67			40/281
well fineware finished sandy sandy	1/2	6/14	1/5	3/8	1/7	9/38	1/2			2/1	1/6	2/9	1/3	1/8
well finished sandy		3/16	8/295 PA1		1/8				2/48 JB4	5/20	1/14	1/52		$_{\rm JC2}^{1/409}$
glauc. sandy	9/107	13/110	84/6			19/87 JC1	11/27	5/50		1/8 PB1	2/13	1/1	02/9	2/18
misc. sandy	11/23 $2/24$	14/55	49/248 PA1	24/117	20/101	38/174	14/62	112/1949 PB1	4/48	34/469 PA1;JC2x3	45/269 PA1	36/211 JC2	19/108	9/80 JB1;JC2
coarse flint	2/9	3/51	1/12	2/14		2/24	8/15	5/31	1/17		5/39	2/20 JC1	3/28	1/6
Fine				1/11		1/4		1/7		9/2				
well sorted flint	21/128	3/11					1/5	44/815 PB1x4	26/298 PB1x3	11/56 JB4/JC2	20/312 PB1x2; JC2x2	15/104 PB1	2/15	27/1313
ceramic phase	MIA	MIA1	MIA1	MIA1	MIA1	MIAI	MIA1	MIA2	MIA2	MIA2	MIA2	MIA2	MIA2	MIA2
Description	pit 5525 pit 5784	pit 5020	pit 5022*	ring gully 5330	ring gully 5334	structure 3	structure 4	pit 5818*	pit $5021(*)$	pit 5069*	pit 5360(*)	pit 5560*	pit 5679	pit 5721*

contained 'placed deposits'; () contained possible 'placed deposits'; vessel forms according to Cunliffe 1984; number of sherds / weight in grammes

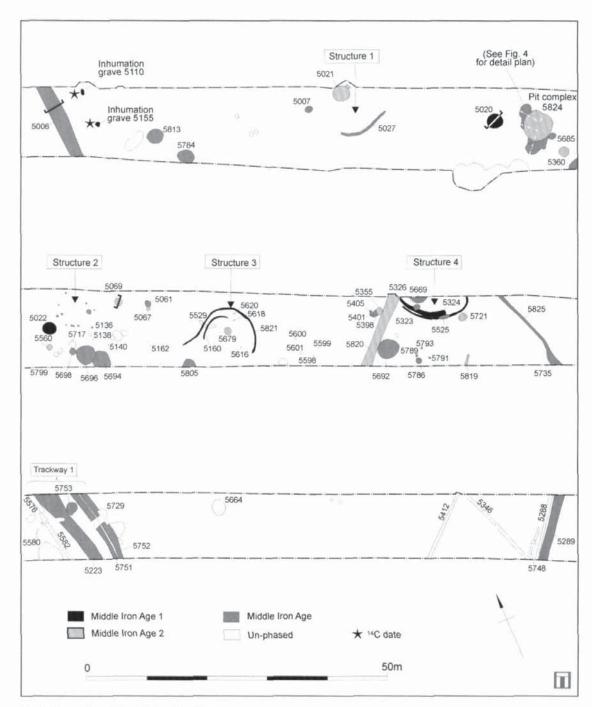


Fig. 3 Phase plan of Middle Iron Age features

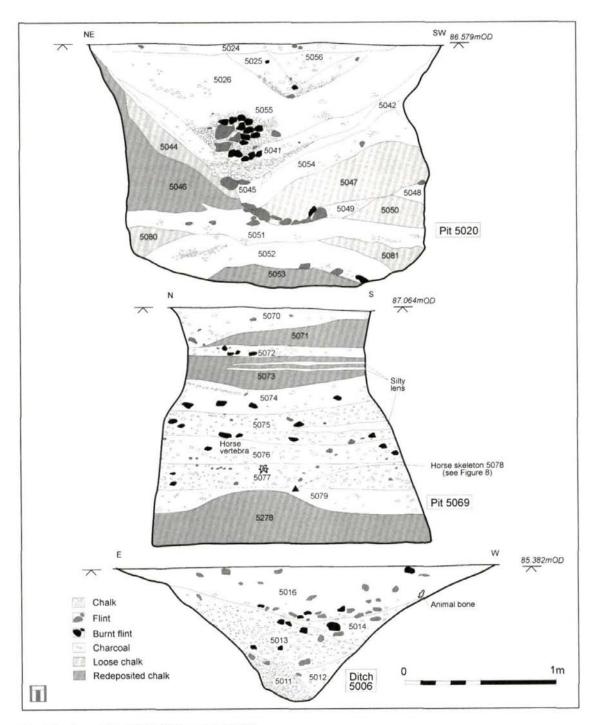


Fig. 4 Sections of pits 5020 & 5069, and ditch 5006

at least 210 m long, connected the D-shaped enclosure with the banjo enclosure 50 m to the north and the rectangular enclosure 75 m to the south, while Trackway 2 linked up various field enclosures, and may have been for animal rather than human movement. The D-shaped enclosure was about 0.5 ha in size. Although the banjo enclosure has not been excavated, it is likely to be roughly contemporaneous with the D-shaped enclosure, as implied by the connecting trackway, and probably also dates to the MIA (compare e.g. Fasham 1987).

In the far west of the site, a more substantial V-shaped ditch (5006; Fig. 4) formed the western boundary of a large enclosure. It was 2.5 m wide and 0.9 m deep with a bank on its eastern side. To the south this ditch formed part of a funnel-shaped trackway (Fig. 1) that would have promoted the movement of livestock into the adjacent field system. Another V-shaped ditch (5162), in the centre of the site, formed the western boundary of the D-shaped enclosure. Although it produced only a few sherds of Iron Age pottery and a larger quantity of Roman material culture, it is likely that it was completely recut in the Romano-British period, as is the case with other Iron Age features on this site. In support of its Iron Age origin, the pair of V-shaped ditches that delineated the eastern boundary of this enclosure (5131 and 5825) contained sherds of MIA pottery, and 5825 was cut to the south by a later Roman pit (5735), only after it had completely silted up.

A sub-division within the D-shaped enclosure is represented by ditch 5820, which also had a V-shaped profile and contained a few sherds of MIA pottery. This ditch demarcated a division between Structures 3 and 4 as well as delineating the edge of the 'main pitting zone', which was located to the west of this ditch.

The Structures (Figs. 2 & 3)

Four possible structures, interpreted as roundhouses, were revealed. Three of the structures were represented by penannular gullies and a fourth by a roughly circular cluster of post-holes.


Structure 1 was situated in the western part

of the site, within the enclosure formed by ditches 5006 and 5162. It was represented by a partial curvilinear gully (5027) that was no deeper than 0.12 m, and had a diameter of ϵ . 7.9 m. It is likely that its form partly resulted from truncation, since it appeared to peter out in the west. A terminal was identified in the east and this may indicate its entrance. The few finds retrieved (five pot sherds and 110 g burnt flint) provide a general MIA date.

Structure 2 was post built with no evidence of an accompanying drip gully. It was roughly 5.5 m in diameter, with an entrance to the southeast. At least ten post-holes may be attributed to this structure; however other post-holes in the vicinity (e.g. 5136 & 5138) may represent repairs or associated structures. The post-holes were on average c. 0.3m in diameter and 0.15 m deep, and one post-hole had a post pipe. Few finds were retrieved; they included a greensand quern fragment from one of the possible entrance posts, small quantities of burnt flint and general MIA pottery.

MIA1 Structure 3 was relatively well preserved and comprised a double penannular gully, 0.32 m wide and 0.22 m deep. The outer gully had an extension to the west, possibly representing a porch, and entrance to the south-west; a partial inner ring gully may have been for drainage. The structure had an external diameter of 9.15 m and an internal diameter of 7.9 m. Fairly large quantities of finds were distributed evenly throughout the outer ring gully, and included several kilos of burnt flint, 59 sherds of pottery and 30 fragments of animal bone, with no particular concentrations noted, for instance at terminals. Other finds included a small quantity of slag and a possible polished stone axe fragment.

The full extent of MIA1 Structure 4 was not revealed. However, it potentially had a diameter of c. 11.2 m. This structure was unusual since it consisted of a narrow outer ring gully (5323: 0.38 m wide and 0.20 m deep) that was later replaced on its western side by an inner wider and deeper gully (5324: 0.9 m wide and 0.45 m deep). Although its original entrance had been to the south, this opening was later blocked by a straight-sided pit (5525: 1.8 m diameter

 $Fig.\ 5\ Post-excavation\ plan\ and\ section\ of\ pit\ complex\ 5824,\ including\ large\ pit\ group\ 5818,\ which\ comprises\ cuts\ 5255,\ 5452\ \&\ 5624$

and 0.5 m deep). While the pit contained only a few finds, many were retrieved from both gullies. Particular concentrations of pottery and animal bone came from the terminals; in fact this was the only location where MIA pottery was recovered from the inner gully. The quantity retrieved from a terminal of gully 5324 (34 sherds weighing 165 g) may be significant, but the sherds appear to have come from at least seven different vessels, as indicated by the fabrics. This structure was cut by ditch 5820 (a later sub-division within the D-shaped enclosure), and at the point of intersection a fairly complete, horned, large cattle skull had been placed in the base of the ditch.

Two other smaller post-built structures were also revealed, possibly representing three- or four-post structures, although their exact form remains unclear. They are represented by post-holes 5598, 5599, 5600 and 5601, adjacent to Structure 3, and post-holes 5789, 5791 and 5793, in the vicinity of Structure 4 (Fig. 2).

The Pits

Both the MIA1 pits were located west of the Dshaped enclosure, while the MIA2 pits showed a wider distribution across the site, with a particular focus around pit complex 5824, and adjacent to Structure 4. Thirteen other pits (5007, 5061, 5398, 5401, 5405, 5669, 5692, 5694, 5696, 5719, 5784, 5805 and 5813) lacked elements of placed deposits or large finds assemblages and could be dated only generally to the MIA. On the whole they were smaller storage pits, some exhibiting the classic bellshaped profile, but several were straight-sided. Some contained sterile backfill deposits while a few of them contained general midden-like layers. A typical example is bell-shaped pit 5007 which measured 1.2 m in diameter by 0.84 m in depth. It contained a horse scapula and ribs towards the base of the pit, along with a few small sherds of pottery.

Of note is pit 5753, situated in the centre of Trackway 1. This was a large bell-shaped pit, 1.9 m in diameter and 1.45 m deep. An almost complete dog foot was recovered from the base of the feature, but all subsequent fills were

gradual sterile silting layers and there was no evidence of any deliberate backfilling. All of the other Iron Age pits excavated demonstrated some evidence for deliberate backfill deposits. It is feasible that this pit was intended as a blocking pit, finally decommissioning the use of the trackway, and perhaps with it, marking the abandonment of the settlement.

Pits of MIA1 date

Pit 5022 was situated to the west of the D-shaped enclosure but in close proximity to Structure 2. It was a classic bell-shaped pit (2 m diameter and 1.2 m deep), whose original profile had been modified by erosion and collapse. A complex series of deposits was encountered, most relating to deliberate backfilling, interleaved with pit edge collapse. At least four, and possibly more, significant depositional events are implied by the finds and environmental indicators.

No primary fill was noted at the base of this pit, and it had probably been cleaned out prior to its backfilling. A sequence of three deliberate domed deposits lay at the base, and these were sealed by burnt flint backfill containing a horse mandible and several small animal remains. The mandible was weathered, and its association with amphibian bones as well as those of wood mice and voles implies the pit was open for a while at this layer. A thick deposit of backfilled chalk overlay this exposed layer and this contained several large sherds of two vessels (at least one saucepan pot with sooting). An organically rich deposit containing pottery and fragments of carbonised rounded tubers and wheat seeds lay above, and this was sealed by a loose burnt flint deposit in which the articulated remains of a young dog, approximately 6 months of age, had been centrally placed. The dog measured over 27 cm at the shoulder and was orientated NE-SW with its head to the south-west, pointing north-west. It was lying on its left side and its flexed legs would originally have been raised resting against the edge of the pit. Some of the bones had shifted slightly, including the pelvis, sacrum and tibia. It is likely that this deposit had been left exposed for

some time, and as it decomposed, the lower leg bones dropped down. The presence of a field vole bone in the overlying deposit supports this idea. Normally, placed deposits of animals or humans occur at the base of pits, and it may be considered unusual that this animal was located several fills from the base. However, it had been carefully placed directly in the centre of the pit in a slight mounded bed of burnt flint. Possible cut marks on the lateral left mandible suggest removal of the skin prior to deposition.

Two different types of deposit later sealed this decomposed dog. A series of burnt flint dumps which weighed nearly a tonne were laid, focussed in the centre of the pit; a significant amount. A silty clay deposit (5085) filled up the edges of the pit, containing a large fragment of a worn saddle quern, while another joining fragment of the same quern was found in fill 5057, which was stratigraphically five layers later. This may imply an element of deliberate intent in this deposition, or it may be that the material used to fill this pit originated from the same midden dump. This fill also contained a group of bones comprising at least two adult cattle mandibles and femora, butchered parts of cattle and horse pelvis, adult horse humerus and maxilla (8.75–10.25 yrs), young adult pig maxillae and deliberately broken large mammal long bone fragments with helical fractures and impact scars. Evidence of puncture marks was discerned on many of these bones, implying they had been exposed for some time to scavengers. The uppermost fills of this pit were dominated by burnt flint.

Pit 5020 was 14 m to the east of pit 5022, and originally had a similar bell-shaped profile that had eroded (Fig. 4). It was a large pit, over 2.3 m in diameter and 1.6 m deep. While the lower, more domed fills comprised deliberate backfill deposits, many of the upper fills were derived from pit edge collapse. However, a few points of interest may be highlighted. Deposit 5051 sealed and levelled off the lower domed deposits, and this contained a quantity of amphibian and small mammal (vole, mice) bones, implying again that this layer had been open for some time. MIA1 pottery sherds were only recovered from the earliest and later fills; generally these were fairly small and abraded and were probably related to midden deposits. Centrally located within this pit, halfway up the fill deposition sequence, was a large dump of burnt flint (over 600 fragments weighing over 50 kgs).

Pits of MIA2 date

Pit 5021 was another large bell-shaped pit (nearly 3 m in diameter and over 1.6 m deep) containing a series of backfilled deposits with

List of illustrated vessels (Fig. 6)

- Peterborough ware body sherd; twisted cord impressed decoration; fabric FL9. Context 5371, treethrow 5327.
- 2. Fineware cordoned bowl; red finished; fabric QU9. Context 5720, pit 5719.
- 3. Jar with finger impressed rim; fabric QU6. Context 5722, pit 5721.
- Convex jar with proto-bead rim fabric QU1. Context 5563, pit 5560.
- Convex jar with proto-bead rim; fabric FL5; particularly well burnished externally. Context 5574, pit 5360.
- Convex jar with proto-bead rim, complete profile; fabric QU7; burnished inside and out. Object Number 44, context 5722, pit 5721
- Convex saucepan pot; fabric QU3. Context 5079, pit 5069.
- Straight-sided saucepan pot, complete profile; fabric FL3; burnished externally, internal sooting or burnt residue. Context 5453, pit group 5818 (quadrant 5452).
- Straight-sided saucepan pot, complete profile; fabric QU1; burnished externally, internal sooting or burnt residue. Context 5453, pit group 5818 (quadrant 5452).
- Straight-sided saucepan pot, complete profile; fabric QU1; internal limescale; ?external sooting. Context 5453, pit group 5818 (quadrant 5452).
- Everted rim jar; fabric QU10; tooled arcs on shoulder; burnished externally. Context 5723, pit 5721.

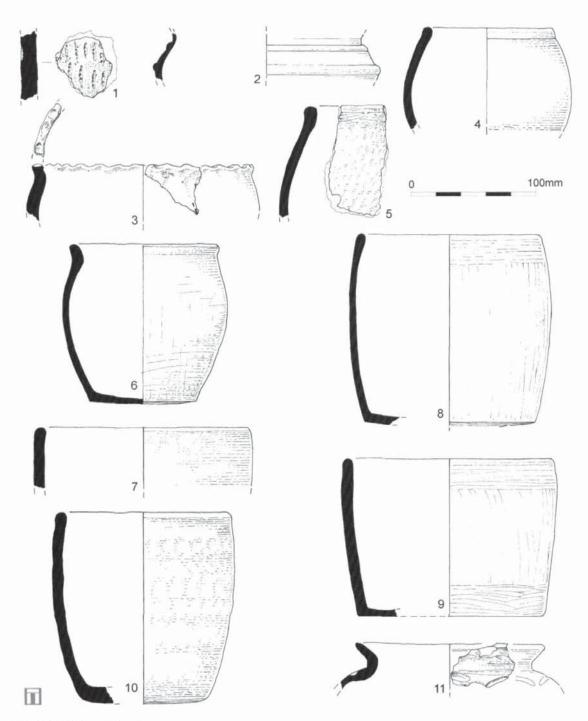


Fig. 6 Neolithic and Iron Age pottery

Fig. 7 Horse skeleton in pit 5069

animal bone and cereal remains (emmer glumes) near the base. These included horse (metacarpal, femur and fragments of skull) and a cattle tibia which demonstrated signs of rodent gnawing. While decorated pottery was scarce from this site, four of the seven examples came from this pit, which also contained a range of sherds from different vessels. These include three straight-sided saucepan pots, and a body sherd, probably also from a saucepan pot, with multiple horizontal tooling.

Pit 5679 was relatively straight sided (1.2 m diameter and 1.2 m deep), located centrally within a roundhouse (Structure 3), but clearly cut once the structure had been abandoned. The animal bone assemblage contained some articulated bones but these are likely to be waste from butchery processes, rather than deliberate deposits. They include items of low meat yield such as a horse metapodial and first

phalange from the earliest fill (Outram and Rowley-Conwy 1998). The two lower mounded fills were dump deposits, rich in charcoal, ash and degraded daub material. Later fills contained some bones that could be categorised as table/consumption waste, comprising ribs, long bones and a young pig skull fragment. The final fill contained a small fragment of a greensand quern.

Pit 5069 was a beehive-shaped pit (1.94 m diameter and 1.57 m deep) containing a series of probable placed deposits (Fig. 4). In the basal fill 5278 a partial female horse skeleton (approximately 3 years old) and an adult cattle hoof were deposited together (Fig. 7). The horse skeleton had been laid east-west on top of a raised chalk platform, with the head facing west. All four legs, tail and scapula had been carefully removed with a knife and were not in this pit. The horse may have been skinned,

and at least partially defleshed. The removal of limbs is often effected to promote easy placement of remains in pits, but this does not explain other anomalies such as the presence of the radius and absence of the mandible. Small animal bones were associated with the partial horse skeleton with a minimum of two frogs, five wood mice, 11 field voles and a water vole. The horse skeleton has evidence of carnivore scavenging, and together with the microfaunal bones and the unusual convex profile of the fill suggests exposure of the articulated remains for long enough for dogs to gnaw the remains before deposition and small animals to become trapped before being covered. Surrounding this skeleton were large fragments of a MIA2 semi-complete convex saucepan pot (Fig. 6.7), as well as a rim sherd from a second, the former probably deliberately smashed and scattered over the horse.

Levelling layers were deposited above the horse skeleton, followed by a backfill deposit of silty clay (5077) containing a large number of pot sherds and a single vertebra from the horse (Fig. 4). Further silty clay deposits were dumped over this horizon, and more small animal bones were encountered, again implying some time lapse between the various events. The pit was sealed with layers of redeposited chalk which were almost sterile save for small quantities of MIA pottery.

Pit complex 5824 (Fig. 5)

This cluster of 13 intercutting pits exhibited some variety, although the majority comprised shallow concave features (e.g. 5244 & 5488). Most could only be dated generally to the MIA, but the latest and largest in the sequence (Group 5818) contained substantial quantities of MIA2 pottery. Due to the complex stratigraphy, the large bell-shaped pit was excavated in quadrants (pit cuts 5255, 5452 and 5624). It is unlikely that the smaller shallow pits were used for storage, and the intensive recutting and sterile fills suggests they were associated with other activities, perhaps representing quarry hollows to retrieve shallow seams of flint. Alternatively, they may have acted as sheltered

working hollows for cleaning or threshing grain or other activities. Similar clusters of intercutting pits were noted at Little Woodbury (Bersu 1940, 69).

Pit 5818 was a fairly large bell-shaped pit, 4.7 m in diameter and 1.45 m deep. Both sides (quadrants 5255 & 5624) were stepped (Fig. 5), perhaps to allow easy internal access. At its base, four almost complete saucepan pots were recovered (Fig. 6. 8-10). Two had internal sooting or burnt residue above the base, and a third had limescale all over the internal surface (presumably resulting from the boiling of water) and possible external sooting as well. The pots were associated with burnt small mammal bones that may represent the mixed remains of floor or hearth sweepings, and a seed of elderberry (Sambucus nigra) which may indicate exploitation of wild plants. Oak (Quercus sp.) was also present in this deposit, and several fragments probably derive from the same timber. Mature oak timber is not normally selected for domestic fuel, so its presence here may be indicative of other processes. Its association with the burnt mammal remains and the external sooting on some of the pot sherds may indicate in situ burning within this pit. However, the chalk base and edge of the pit had not been discoloured pink. The pots were sealed by deliberate backfill deposits that contained a cattle scapula and a fragment of greensand quern.

The upper fills of pit quadrant 5255 contained a mixture of animal elements, including a proportion of smashed and gnawed bones of high meat yield (vertebrae and marrow filled long bones), and these seem to have been more intensively exploited, perhaps reflecting periods of differing resource availability and needs.

Pit 5560 just south of structure 2 was a small bell-shaped pit (1.6m in diameter and 0.85m in depth), containing a series of rapidly dumped, organically-rich deposits all derived from its south-western side. Large quantities of material were retrieved from the lower fills only, including a range of sherds from different vessels (e.g. Fig. 6. 4, a convex jar), and these included pot joins across separate deposits. Again burnt small mammal remains were recovered from

the lowest fill (possible floor sweepings), associated with a small fragment of human bone and foetal sheep/goat remains. Triangular loomweight fragments were recovered from fill 5564, while fill 5565 contained eight fragments of a greensand rotary quern (three upper and five lower). Most showed signs of burning as did a fragment of limestone with smoothed outer surfaces. The lowest fill also produced remains of large rounded tubers that may be wild species with a large edible taproot such as wild parsnip which is a common plant of chalk and limestone.

Pit 5721 was adjacent to Structure 4 but is later in date than the roundhouse. The pit was straight-sided (1.5m in diameter and 1.3m deep) and again contained a series of possible placed deposits. These included two semicomplete jars, a convex jar and the base of a second vessel (Fig. 6. 6) that had been inverted and set against the edge of the pit. A large rim sherd from a shouldered jar with finger impressed rim (Fig. 6. 3) was also retrieved. A series of rapid backfill deposits overlay the inverted pots and contained a group of 22 rounded quartz and flint pebbles, presumably deliberately collected, in association with an everted rim jar, with tooled arcs (Fig. 6. 11). One of the later deposits contained a large fragment of a poorly fired triangular loomweight of Type 1 (as defined by Poole 1984: non-equilaterally triangular, with rounded corners, perforated from side to side). Although incomplete, its size suggests a larger example than in Poole's Danebury sample, but similar dimensions are present in the weights from Maiden Castle (Poole 1991, 210). The loomweight may have been perforated through two corners only, and there is clear wear on the surface indicating repeated suspension.

Pit 5360 was large, deep and beehive-shaped (2 m in diameter and 1.65 m deep) and situated immediately to the east of intercutting pit group 5824. Large quantities of dumped material including pot, bone and burnt flint were encountered in the lower organic fills. While mineralised remains were rare in most of the samples from pits across the site, the lower deposits of this pit contained a large amount of

mineralised, cess type material. A whole sheep/goat dropping suggests that this may have come predominantly from animal waste, and implies that dumps of manure may have formed a large component of this deposit. A decorated pot sherd (a saucepan pot rim with tooled line) was also recovered from the lower fills of this pit, associated with a number of other sherds belonging to various different vessels including a well-burnished convex jar (Fig. 6. 5), possibly representing a placed deposit.

Animal bone from this pit was particularly interesting, and up to five placed deposits may be represented from three separate lower fills of the pit. The lowest domed deposit, 5574, apparently mounded into the centre of the pit and open for some time, contained at least two incomplete foetal pigs and a partial immature hare. The more complete of the two pigs consisted predominantly of ribs, right-sided upper limb bones and a single left femur (many of the elements of higher meat utility), although the porous nature of the young bone will have made it particularly susceptible to destruction. The hare, conversely, was more complete with a skull and vertebrae, but was missing most of its right-sided elements. It may be that these two individuals had been placed on their right and left sides respectively, with the uppermost side exposed, which could result in these weathered parts being more susceptible to destruction during recovery and processing. No gnawing or butchery marks were present. The smaller of the two piglets was represented only by a single tibia, which might indicate that parts recovered were those that had been deliberately selected, rather than unduly influenced by preservation or excavation practice as suggested above.

Overlying this deposit was a relatively thick lens of organic cessy silt (5573) containing what could be regarded as more typical waste material, smashed long bones and ribs, together with articulating young pig astragalus and tarsals; this may have originated from the piglets represented in the lower deposit 5574. Deposit 5573 also contained the remains of three immature stoats, a domestic fowl and wood mouse.

Young stoats may hunt in packs in the

autumn with their mother, and it is known that immature animals are more likely to have accidental falls and be caught in traps than mature individuals. Their common prey, water voles, were present on the site and these animals may therefore have fallen into the pit while hunting, or perhaps were deliberately trapped for their skins (no cut marks are visible, but this does not in itself indicate that no butchery had occurred). However, considering the presence of several other 'special' deposits (as defined by Grant 1984) in this feature, it is perhaps likely that the stoats, too, fulfilled a ritual function.

The subsequent deposit (5517) in the north eastern part of the pit contained not only waste (some scorched, perhaps from cooking) but also articulated remains, including two complete right side mature sheep feet with cut marks, and two pig scapulae and tibiae. A later fill, 5364, contained an unusual deposit of two horse and cattle distal femora and two horse and cattle complete radii, found with one of the few bird bones. The remains had been exposed and were accessible to scavengers (probably after placement in the pit) as is evident from the puncture marks in several of the bones and the large numbers of small animals that were present.

These unusual animal bone deposits were sealed by later fills containing pottery and other artefacts including a worked bone toggle from 5365 and a copper alloy pin and greensand quern fragment with a smooth face from the immediately overlying deposit. The toggle (Fig. 8, SF 11) was a carefully squared section of an unidentified bone belonging to a large mammal with some working of the existing internal hollow. The piece is abraded and somewhat irregular and the 'perforation' is sub-circular.

It is worth noting that 'ivoried' bones were most numerous in this pit, all in the lower five fills, which are those that contain the articulated parts and microfauna. Once thought to indicate roasting and seen on small proportion of bones from many assemblages, the cause of this effect is not fully understood, and the ivoried nature of the partially articulated fowl skeleton suggests that cooking is not the expla-

nation, since cooked joints easily separate. Perhaps the condition is connected to predepositional treatment of bone, which differed between particular pits according to which products have been discarded or placed where. Alternatively, conditions within individual pits may be an influence. Ivorying does not seem to be exposure-related since it is not apparent in bone from several of the definitely exposed deposits. Interestingly, contexts 5574, 5573, 5518, 5575, and 5517 were the only deposits with a distinctly cessy nature, and perhaps ivorying occurred in (some of the) bones that had been deposited in such fills. This is worth considering on other sites where ivoried bone has been observed.

The Burials

Two unaccompanied inhumation burials were found at the western end of the site, c. 4 m to the east of ditch 5006, possibly immediately adjacent to its bank (Fig. 3). The graves were parallel to the ditch. Both graves were small, shallow and rectangular, just under 1m in length, between 0.6 and 0.8m in width and 0.15–0.20m deep. They both contained adult flexed inhumations, but due to the shallowness of the grave cut, were truncated to some extent.

Skeleton 5089 (grave 5110) represents the remains of a female, aged 35–40 years, orientated roughly north-south with the head to the south (Fig. 9). The body was flexed on its right side and slumped forwards with the right arm beneath the body and the feet possibly crossed at the ankle. Grave 5155, containing skeleton 5156, was situated 5m to the south of grave 5110. Skeleton 5156 was also female, c. 30–45 years of age, again orientated north-south with the head to the south. The body was placed flexed on its right side and had slumped forwards to an almost prone position. The right arm lay beneath the body and the legs were less tightly flexed than those of skeleton 5089.

Stature was estimated at c. 1.54m (c. 5' $\frac{1}{2}$ "; 5089) and c. 1.62m (c. 5' $\frac{3}{4}$ "; 5156), and both are slightly taller than the mean of 1.53m observed in females from Danebury (Hooper

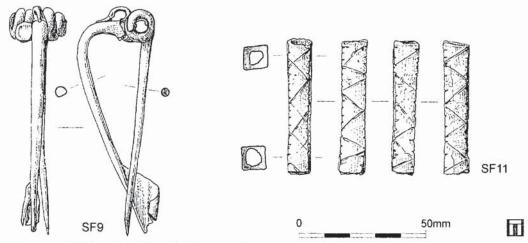


Fig. 8 Romano-British brooch and Iron Age bone toggle

1991, table 8.7). Various pathological lesions were noted; a summary of the lesions in each skeleton is presented in Table 1. The overall caries rate is *c*. 10% (5/48 teeth), which is the same as that recorded for the British Iron Age by Brothwell (1972, fig. 55) and for the females from Battlesbury Bowl, Wiltshire (McKinley 2002), and similar to that of 8.2% recorded for the Danebury Environs (Hooper 2000).

Direct evidence of trauma is limited to a single well-healed fracture in one upper right rib from burial 5089. Rib fractures are the most common in archaeological assemblages and most are the result of a direct blow – deliberate or accidental, such as a fall against a hard object (Adams 1987, 107).

The small size of the assemblage, poor skeletal recovery and variation between these two females render any general comment on health status inappropriate. The overall rates for various conditions are similar to those observed in contemporaneous assemblages and there is nothing to suggest the lifestyle and status of these two individuals was out of the ordinary.

Since both burials were unaccompanied, samples of bone from the femurs were submitted for radiocarbon dating. Both gave ranges within the Early-Middle Iron Age (Table 2), implying that they were associated with the main phase of occupation on the site. Although at first sight the calibrated dates overlap but do not seem to be contemporary, examination of the distributions in Table 2 show that there is a high probability that they are contemporary with each other (within 100 years). They probably date to 550–350 cal. BC.

ROMANO-BRITISH

There was a hiatus in activity on the site in the Late Iron Age, with re-occupation in the second half of the 1st century AD. It is likely that some of the Iron Age field boundaries survived either as visible earthworks or as hedgerows throughout this time, since elements of them were recut in the Romano-British period.

An irregular enclosure, ditch 5341, at the eastern end of the site (Fig. 1) dates to the early Roman period, as demonstrated by the presence of necked, cordoned jars, bead rim jars, platters, an Atrebatic bowl and flint-tempered Silchester ware (Charles 1980). The geophysical survey suggests that the enclosure was open to the south. Only one other feature (pit 5782) seems likely to be early Roman, since this contained everted rim jars and a reeded rim bowl.

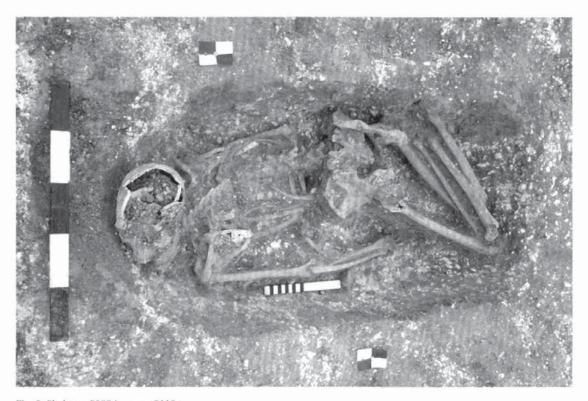


Fig. 9 Skeleton 5089 in grave 5110

The remaining features fall within the later Roman period, and it is likely that some represent a re-use of existing Iron Age ditches. Ditch 5162 was probably a re-utilisation of an Iron Age boundary, since it follows the Iron Age alignment and was originally part of the D-shaped enclosure, but contained large quantities of later Roman material, including Alice Holt greywares and Wessex grog-tempered ware (Fulford 1975). Two coins were retrieved from its upper fills, suggesting activity within the late 3rd and 4th centuries AD The first is a heavily worn 'Barbarous Radiate', a copy of a coin of Claudius II, probably dating to between AD268 and 290. The second is a small copper alloy follis of Valentinian I, dating to AD364-378. This showed signs of wear and is likely to have been in circulation for some time before its deposition or loss. The ditch also produced a simple one-piece sprung bow brooch of Colchester A type (Hull type 90 b, Crummy 1983, 11 f. fig. 6,40), a form that is normally dated to the first half and the middle of the 1st century AD (Crummy 1983, 12; Bayley and Butcher 2004, 149 f). However, it is possible that the brooch was deposited in the ditch a long time after it had been manufactured, as it shows signs of wear, breakage and repair (Fig. 8, SF 9). The non-perforated catchplate is ripped below the foot. The chord is missing and was broken in antiquity, being replaced by an axial bar threaded through the turns of the still-attached left-hand piece and securing the detached right-hand turns and pin. Repairs on Roman period brooches are generally very rare, and, where considered during assessment, their occurrence is frequently decidedly below 1 %, as e.g. at Richborough (3 of at least 445

brooches; Bayley and Butcher 2004, 34) or Augst and Kaiseraugst in Switzerland (0.07 %; Riha 1979, 37; 1994). In Germanic contexts beyond the limes, however, levels of repairs have been reported to range between 6–14 %, which was considered to reflect the greater difficulty in replacing a broken piece with an entirely new object (Schuster 2006, chapter 4.1.7), and this may also be the case here.

It is possible that during the Roman period ditch 5162 was an isolated boundary marking a land division or formed an element of a much larger field division not detected in the excavation area. Trackway 1 and corn-drier 5724 produced New Forest and Oxfordshire finewares, Alice Holt greywares and Wessex grog-tempered ware. Ditch 5820, Trackway 2 and pit 5735 cannot be more closely dated within the period. However both the trackways and ditches also contained MIA pottery, and it is likely that the Roman pottery from Trackway 1 was intrusive (derived from disturbance associated with constructing the corn-drier). The other ditches were recut or reused - Trackway 2 was recut as a double-ditched trackway.

The later Romano-British corn-drier 5724 which cut Iron Age Trackway 1 (Fig. 10) was keyshaped in plan with the stokehole at the western end and the T-shaped flue at the eastern end. The structure was well-built and measured c. 4.60m in length, 2.9m in width, with a maximum depth of 0.78m. The walls were flint-coursed bonded with chalk paste mortar, with two flint benches constructed along their sides. Steps had been cut into the chalk on the southern side to permit access into the stokehole. Floor and roof tiles originally covering the flue had probably been robbed from an abandoned Romano-British building in the vicinity. It is likely that this corn-drier had a relatively short life span since the walls were not intensively burnt and only thin lenses of carbonised matter survived on the base of the flue.

Soil from the stokehole was relatively rich in environmental remains and contained a range of crops and chaff similar to those seen in the Iron Age. The remains were dominated by spelt glume chaff, although grains of hulled wheats were also common. The incidence of germinated wheat grains among well-preserved specimens was relatively low, around 10 %.

The weed species represented were different from the Iron Age assemblages. Seeds of grasses, orache (Atriplex sp.) and poppy (Papaver sp.) were more prevalent than within the Iron Age samples, and seeds of cleavers (Galium aparine) were totally absent. Seeds of thistle (Cirsium sp.) and knapweed/cornflower (Centaurea sp.) were also present. The latter is probably cornflower (Centaurea cyanus), a Roman introduction. Unfortunately none of these weed species is ecologically specific.

The corn-drier was also the only Romano-British feature to contain a large quantity of disarticulated animal bone. The upper backfill included relatively complete large mammal long bones, from at least two horses and one cow. The deposition of the large unbroken pieces, obviously not exploited for marrow, may have followed an episode of large-scale butchery. This may represent feasting or a placed deposit, not dissimilar to those encountered in Iron Age features. Other potential placed deposits were recognised in ditch 5162, which contained the skull of a medium-sized, elderly dog, a mature cattle mandible and large roe deer antler.

The features associated with the Romano-British phase of activity were largely restricted to the central and eastern part of the site. The evidence suggests low-level rural activity, probably associated with a settlement in the vicinity.

DISCUSSION

The site at Weston Down forms a component of a more extensive Iron Age landscape, comprising at least three Iron Age enclosures, varying in form and perhaps function, but presumably roughly contemporary. The linking of strings of enclosures along ditched trackways are often referred to as 'ladder settlements' (Collis 1996, 91).

Our understanding of the site has benefited from an integrated approach, which has pulled together the various strands of evidence. It is only through a combined analysis that it

Fig. 10 Corn-drier 5724 from the east

becomes possible to identify how all these features and finds relate to daily life, social and economic systems as well as the less tangible aspects of the Iron Age inhabitants – their belief systems and associated symbolism.

Boundaries and Division: Site layout

Most of the ditches forming enclosures, boundaries and trackways on the site could not be dated more precisely than the MIA. However, the pottery assemblage suggests that Trackway 1 may have been one of the earliest elements of the site, with the D-shaped enclosure and other boundaries established later, developing out from the trackway. In general, it would appear that EIA settlements tended to be open and the tradition of enclosed settlements did not emerge until the MIA (see Haselgrove et al. 2001, 27). It may have been the 5th century

BC when the main phase of boundary demarcation took place at Weston Down. It is unlikely that any of the boundary ditches primarily performed a defensive function, since, despite some truncation, they were all relatively shallow, with none exceeding a depth of 1.20m. A similar situation has been noted at other enclosed sites of this date (McOmish 1989, 106–7), and it is more likely that the ditches served to divide and demarcate space and act as animal barriers. However, it is also feasible that the ditches were invested with ideological properties. McOmish states (*ibid.*, 107) that they were used to help 'transform abstract space into inhabited place'.

Economy

Animal Economy

Since the majority of the Iron Age faunal assemblage derived from pits, it may represent

specific parts that were exploited for particular, non-functional, purposes, and therefore may be unrepresentative of the animal husbandry regime, or animal consumption. There is clear evidence of butchery techniques from the animal bone assemblage, identified on 12% of counted fragments, a typical percentage for the Iron Age. These predominantly consisted of fine, targeted knife marks for disarticulation (31 examples) rather than chop marks for portioning the carcass (eight examples), and neither were species specific. Evidence for filleting was less common (five cuts) and only two skinning marks were recognised. In some cases bones had been smashed while fresh, probably to extract the marrow, although no horse bones had been exploited in this manner. A large proportion of all the counted bones were complete, suggesting that a considerable amount of consumable material was deposited with the bone. This could result from the nature of bone selected for deposition; perhaps bone from 'everyday' consumption was deposited on middens or used for manuring.

Live animal exploitation

Although sheep/goat were more numerous than cattle on site in the Iron Age it is likely that they are under-represented due to poor preservation condition. However, cattle and horse provided up to ten times more meat than sheep/goat and pigs. Horses were fairly common, although little can be drawn from this since the sample sizes are rather small. In common with similar rural sites, little in the way of exploitation of birds, fish and wild species is seen, and the only evidence of such animals may be in the form of 'special' deposits.

There is a wider range of medium and large mammal species on site in the Romano-British period, with the addition of deer to the assemblage, although only the shed antler may have been exploited. Again the incidence of wild species, birds and fish is limited, and in this respect little altered from the Iron Age. The increase in horse bones perhaps indicates an intensification in the use of draft animals in this period.

Husbandry practices

Most of the Iron Age cattle seem to have been kept into full maturity. Adult cattle were probably retained for a variety of purposes, including ploughing and for milk, and only killed for food when fully mature. There is some supporting evidence for old age or hard labour from the pathological modifications on a cattle pelvis. The animals are fairly small, even for the Iron Age, at an average of approximately 1 m at the shoulder, although this may be an underestimate if a large proportion of females was present (no definite males were identified).

Sheep had a different age structure as ascertained from bone fusion and tooth wear analysis, with three quarters surviving their first year. A large proportion were killed at the age of approximately 30 months, leaving only 10%, presumably the breeding stock. The wear stages cluster at 18 months, 3–4 years and full maturity respectively (using figures for 18th century hill sheep), perhaps indicating seasonal culls (of animals over a year old) in the autumn, although numbers are too small to be conclusive.

This pattern is suggestive of a mixed-use population, kept to provide food, wool, perhaps milk, and to propagate the flock. Periodontal modifications were the only noted pathologies and are generally common in studied Iron Age sheep from the area (Grant 1984). Such factors are often regarded as arising from overstocking of animals. The sheep are also small, slightly more so than at surrounding sites.

Pigs lived for even shorter periods, with a third killed in their first year and none surviving past two years of age. Male and female were both present, as would be expected from a herd maintained mainly for meat. Again they are similar, if not slightly smaller, in size than other Iron Age sites in the region.

There is bone fusion evidence of one equid over the age of 20–24 months, and one under this age, the latter perhaps indicating breeding or capture of young wild animals for training. Tooth wear analysis also indicated an individual that died young, around two years, and another at between 5 and 12 years. Horses are the only species at this site that are not smaller than

those in surrounding areas (Hamilton 2000), although the one Romano-British animal for which height could be estimated was larger still.

In the Romano-British period very little evidence for animal husbandry is available, but one sheep at least was under the age of 36 months, cattle were killed both before and after maturity with one very old individual, and there is no evidence of immature horses, with one individual probably dying at 8 years. Similarly, wear on teeth indicated only mature canids; one individual probably in old age and another fully mature dog were identified. Both dogs and horses were probably kept as work animals, if not pets, and were of more value old than for their meat, which does not seem to have been particularly favoured in the Roman period. Cattle and especially sheep, conversely, were being killed while immature, probably for meat, although it is likely that they were also serving other purposes.

Hunting and trapping

Deer were represented by only two pieces of antler, from two different Romano-British ditches. They may have been collected from naturally shed antler for small-scale craft activities. Two small and one blackbird-sized passerine bones were recovered from a Romano-British ditch and corn-drier and one Middle Iron Age pit. There is no evidence to suggest that these birds were deliberately captured although they can be eaten; and there is no evidence for the tradition of corvid remains being deposited in Iron Age pits that is seen in other southern British sites, such as Danebury or Winklebury for instance.

Animal-human relationships in the locality and region of Weston Down

Sheep and cattle were all exploited for their secondary products as well as meat, while pigs were killed at an early age for their flesh. Horses were common, and this may be connected to the prevalence of special deposits (which at Danebury showed a predominance of the less

common species; Grant 1984), rather than a particular specialism of the site or fondness for horse flesh. They may have been used in higher prestige activities, such as chariotry and riding, rather than fieldwork, and fittings to support this have been found on Iron Age sites such as nearby Bury Hill (Cunliffe and Poole 2000).

Evidence of change can be seen between the Iron Age and Romano-British phases of occupation; for example the presence of deer in the later period, despite a smaller sample, may be reflecting wider exploitation of animals. Possible links with the Roman world in the Middle Iron Age can be suggested from the method of chopping scapulae thought to result from salting and common on many urban Romano-British sites in Britain (e.g. Dobney et al. 1995).

Some Iron Age bones were burnt in a manner that could suggest cooking of flesh on the bone, after careful disarticulation which is typical of the period. A few unusual modifications were seen, and some bones were further utilised during small-scale bone working in both the Iron Age and Romano-British periods. An interesting link between the presence of cess and ivoried bones has been identified, and it will be interesting to see whether this connection is replicated on other sites.

Plant Economy

The site is located on typical Hampshire chalk downland which was largely cleared of woodland and existed as open farmed landscape at this time (Balksbury (Allen 1995)). There is evidence of former woodland soils in a Neolithic tree hollow, but by the Iron Age and Romano-British periods this was an open farmed landscape like sites elsewhere in Hampshire such as Balksbury (Ellis & Rawlings 2001), the Danebury Environs sites (Campbell 2000), and Lains Farm (Bellamy 1991). Snail samples taken from some of the Iron Age pits at Weston Down produced typical open country species, in particular Vallonia spp., Helicella itala, and Pupilla muscorum. None of the samples contained freshwater species as have been noted at Balksbury (Allen 1995) or Winklebury (Thomas 1977). Certainly copses and woodland existed and typically oak and hawthorn were present as wood on site, either as fuel or timber for construction and woodworking. What is of significance therefore is the nature of the farming at this site.

The inhabitants were cultivating predominantly spelt wheat with barley and emmer/spelt. Local chalkland soils were cultivated, though there is some evidence from the weed seeds (sedge) to suggest that the fields extended down onto the edges of the wetter ground of the river valley. Cleavers suggest autumn sowing (Reynolds 1981; pace Jones 1981), and the crop was harvested low to the ground as indicated by very low growing species, for example, greater plantain (Plantago major) and clover (Trifolium sp.). There is too little evidence to suggest any changes in the crop composition or the crop versus animal ratios between the Iron Age and Romano-British phases.

The high quantities of glume bases in all samples is indicative of waste from pounding (van der Veen 1991). Grain was stored in spikelet form (i.e. in an almost clean state) and removed from storage, cleaned and processed probably as needed for consumption (Stevens 2003). The pattern of processing also compares well with other Iron Age sites in the region such as Danebury (Jones 1984), Balksbury (de Moulins 1995), Easton Lane (Carruthers 1989), Micheldever Wood (Monk and Fasham1980) and Winnall Down (Monk 1985). On this basis we can suggest that the site was a largely self-contained farming community and there is no evidence for use of grain as a tradable commodity. Generally, in the Romano-British period larger volumes of grain were dried using corn drying ovens. The greater scale of drying might indicate larger populations, the use of grain for populations beyond the immediate settlement implying trade or the introduction of malting of grain for brewing.

Only one of the pits at Weston Down was exceptionally rich in plant remains (5360), while others (e.g. 5021, 5022, 5069, 5326) produced little or no crop remains. This variation in remains is noted on other sites

in the region, such as Easton Lane (Carruthers 1989) and several of the sites within the Danebury Environs project (Campbell 2000). This may relate to the rate and nature of infill of these features. Rapidly infilled pits are likely to contain less charred material, while others may contain deliberately deposited midden material. The burnt wheat at the base of pit 5360 may have been such a deposit.

Trade and Exchange

The majority of the finds retrieved from the site support the idea that the settlement at Weston Down was predominantly self-sufficient, with few imports. For instance the faunal assemblage does not indicate trade in animal foodstuffs or raw materials. Likewise, the range of raw materials identified in the Iron Age pottery at Weston Down (e.g. flint, sand, chalk) could easily have been available locally, within c. 10km of the site. However, some of the finer and better finished fabrics suggest the presence of regionally produced and traded wares on site (c.f. Morris 1995b, 28; Rees 1995, 40). Glauconitic fabrics were identified (over 100 sherds) and these have been recognised on other sites as non-local, originating from Upper Greensand areas to the south-west of Danebury (Cunliffe 1984, 245-6).

The Domestic sphere

The majority of archaeological features were concentrated around the D-shaped enclosure, although not necessarily within it. The two most substantial roundhouses (Structures 3 and 4) lay within the enclosure, while Structures 1 and 2 were to the west, as was the intercutting pit cluster. Some of the deepest pits were located near the roundhouses, although the structures and the pits need not be contemporary.

Iron Age roundhouses tend to follow a strict orientation with southern or south-eastern entrances (Oswald 1997). Eastern entrances were for practical reasons, such as avoiding the prevailing wind, but they may also have been associated with cosmological factors such as sunrise and the daily cycle of light and darkness which revolved around the

house (Parker Pearson 1996; Fitzpatrick 1997; Oswald 1997).

At Weston Down, the porch and entrance of one of the roundhouses (Structure 3) faced the south-west. Examples of structures with reversals in door orientation have also been identified at Danebury, Maiden Castle, Winklebury, Old Down Farm and Glastonbury (see Hill 1996, 104). Hill's analysis (*ibid.*, 108) demonstrated that this is an unusual orientation, with only c. 1–2% of all Iron Age structures in southeast England facing in this direction. These structures have been interpreted as special sites, outside the 'normal' daily routines, and linked with dark, death and barrenness (Parker Pearson 1996, 127).

Pits, Behaviour and Belief

One of the Iron Age research themes that has been subject to much discussion in recent years relates to pits, structured deposition and meaning. It has been accepted for a long time (e.g. Hill 1995, 8-20; Cunliffe 2000) that Iron Age pits, once they fell out of use, were backfilled. This may have been for purely practical reasons or for less explicable motives, associated with ideological practices. The forms, depths and profiles of the pits often provide indicators concerning their original roles. The larger, deeper bell-shaped or beehive shaped pits have frequently been interpreted as grain storage pits (e.g. Cunliffe 2000). While many pits of this form were excavated at Weston Down, a variety of other types were also encountered, including smaller concave or straight-sided pits. It is likely that they fulfilled a range of different functions, including ovens, latrines or the storage of inorganic items.

Cunliffe (1992, 1995), Hill (1995), Parker Pearson (1996) and Fitzpatrick (1997) have focussed on the complex factors that may lie behind pit deposition, and how such practices provide clues relating to Iron Age ideologies. Iron Age life revolved around farming and perhaps these deposits were thought to have helped to ensure the success of the farming regime through fertility rituals and offerings to the gods. Anthropological studies (e.g. Hodder 1982; Moore 1986) show that residues

of material culture are often used to structure human relationships and make sense of the wider world. It should be feasible to recover those symbolic principles through examining patterns within the archaeological evidence.

Pits are the main repositories of material culture in the Iron Age of central southern Britain. For instance at Danebury, the pits contained over 75% of the material culture from the site as a whole (Cunliffe 1995, 7). Excavations on Iron Age sites in the last twenty years have shown that material retrieved from pits and ditches often demonstrates complex and highly structured patterns. As at Danebury, Balksbury, Micheldever Wood and Little Woodbury, amongst others, many of the pits at Weston Down had been deliberately selected for deposition demonstrating ritual behaviour, after they had fulfilled their original function and had been routinely emptied of their stored goods. As a result of the extensive and thorough work by Cunliffe and his colleagues at Danebury and Hill (1995) more widely, it has become possible to identify patterns and repetition in pit deposits. Most notable are the special deposits on pit bottoms, and in general the evidence from Weston Down supports this. It would appear that certain types of things could be combined in pits, others had to be excluded, and 'special' deposits included a variety of material, not just completely or partially articulated humans or animals or complete pots.

Location

Only a small part of the site was excavated and this may bias a full understanding. However, it is still worth looking at the types of deposits in the pits and seeing how they relate to other features within the settlement and the use of space.

Some of the material in the pits may have been occupation debris that had been stockpiled in middens. This need not be viewed as the pits providing convenient containers for dumping domestic 'rubbish'. Middens provided organically rich deposits that were ideal for spreading over fields to promote soil fertility and crop production. If such valuable nutrient rich deposits were put in a pit, they may have

been meaningfully placed. The symbolism seems to focus around fertility and perhaps the placing of 'fertile soil' into holes in the ground was intended to ensure good yields of crops. Parker Pearson (1996, 127) has proposed that the soil placed in abandoned pits may have been considered an offering or sacrifice from the midden.

It has been suggested that the storage pits provided links with underground deities. The pits allowed the seed corn to be stored under the protection of 'the chthonic deities during the liminal period between harvest and sowing. After the pit had been emptied and the grain was sown, a propitiatory offering was made in the pit and sometimes additional offerings were made after a passage of time' (Cunliffe 2000, 130).

It is feasible that the structured deposits were made at specific times of the year, linked with the agricultural cycle and the processes of death, regeneration and rebirth. Perhaps some of the deposits reflect activities taking place at seasonal festivals, marking important points during the agricultural year. It is worth noting that late summer/autumn deposits are represented by young stoats and corroborative archaeobotanical data (the presence of cleavers). The wear stages of sheep teeth are also suggestive of seasonal deposition, perhaps because autumn was the time when meat animals were culled. However, the presence of sheep neonates indicates that deposits also occurred in the spring. Although this data is limited, evidence of seasonality focuses upon two periods - spring and autumn. These are perhaps the most significant periods within the agricultural cycle - the sowing of new crops and birth of animals, and the harvest and slaughter of animals.

From the detailed study of pits at Danebury, Cunliffe (2000, 263–275) divided the pits into two main types – slow cycle and fast cycle pits. The former were eroded pits that had lost their original profiles and episodes of filling included both deliberate deposition and natural erosion. The latter were uneroded pits where the entire fill was deposited in quite rapid succession. At Little Woodbury, none of the pits excavated contained layers of naturally deposited soil,

and their pit walls were unweathered, implying that all had been deliberately infilled rapidly (Bersu 1940, 53).

In the main, the pits at Weston Down appeared to show the reverse of those at Little Woodbury. Of the 15 storage pits excavated, only two (5560 and 5721) appear to have been rapidly backfilled, while the others provided evidence that they had been left open for some time. Many of the pits had alternate layers of deliberate backfilling followed by natural silting as the weathered pit wall edges eroded and the features lost their original shape.

Several pits contained small animals that had become trapped in them, suggesting they had been left open for a time. Furthermore the bones from a number of pits were weathered and gnawed, indicating that they had been exposed to the elements and canids. While some of this can be explained as weathered midden material being put into pits, the pattern does not fit completely. For instance the articulated horse skeleton would not have come from a midden, neither would the articulated dog. Yet the skeletons from these two animals were gnawed and weathered respectively, as were the two foetal pigs. Perhaps intriguingly, all of the contexts that contained 'special' animal deposits (i.e. more or less articulated) also had many more small mammals and amphibians than those from other deposits. This indicates that after certain deposits were made within these pits, they were left open for some time on view, before being covered up. The dog skeleton actually seems to have partially decomposed (as evidenced from the displacement of the leg bones) before another fill was deposited over it, and this may have taken months. Perhaps displaying these remains was an important element in some of these deposits, as relevant as placing them in the pits themselves. It could be possible that the pits themselves acted as arenas for display. Witnessing the decomposition of animals may have been important, whereby the decay and transformation of the dead guaranteed future fertility. The presence of carrion remains in at least one of the pits might imply bird scavenging, and picking of flesh from the bones. If the pits themselves were locales for excarnation rituals, then perhaps the very act of cleaning the bones and transforming the wet, cold, dead, fleshy bodies into dry, dusty bones also highlighted the cyclical concept of death and rebirth.

Some of the pits may have filled over quite a long period of time, perhaps even a year or more. The pits that contained three or more special deposits in separate layers may represent different seasonal events, and various ritual practices that marked the agricultural cycle. Although the evidence from Weston Down is limited, it is worth suggesting that some of the pits may have functioned almost as 'time markers' or clocks, representing a sequence of different deposits linked to different seasonal events that governed the farming year. Perhaps the pits that had been rapidly backfilled (fast cycle) represent a different set of beliefs carried out as a result of a different type of ceremony.

Although the assemblage from Weston Down provides a small dataset, it is possible to identify some spatial patterns in the location, nature and type of deposits made. One pattern identified relates to the presence of querns. These occurred regularly in the pits - over 45% of those excavated contained quern fragments. However, they were always fragmentary, sometimes perhaps deliberately broken (suggested by joins across separate deposits) and were often burnt, perhaps deliberately. Furthermore, they almost always occurred in the upper fills of the pits, unlike other artefact categories. Querns were undoubtedly imbued not only with economic, but also social and ritual meaning. As milling tools, the grinding surfaces of querns transformed the inedible into the digestible. Their close association with the creation of foods means that querns may have been ascribed with symbolic meanings linked not only with grain processing but also with cycles of fertility. The fact that they were sometimes deliberately broken and burnt may have been a result of rituals that destroyed or transformed their original power.

Some of the more complete examples of animals deposited in pits at Weston Down include dog and horse. The horse may have held a different status level to other animals (wild, prestige etc.) and since dogs were used primarily for guarding property and hunting (Hamilton 2000, 69; Haselgrove et al. 2001, 10) they may also have been viewed differently. Hill (1995, 107) has suggested that in Iron Age societies dogs, horses and humans were perceived in a conceptual space somewhere between wild and domesticated animals. At the Middle Iron Age settlement of Winnall Down, special deposits of horse and dog were noted clustering around the house area (Parker Pearson 1996, 128). At Weston Down, there may be some spatial significance in the location of these types of animal remains. The complete dog skeleton came from a pit that also contained a number of horse bones, located immediately to the west of Structure 2. The legless horse skeleton was also associated with this structure, and was deposited in a pit directly to its east, just beyond its entrance. Horse remains were also recovered from pit 5021, just to the north of Structure 1. The only other horse bones identified came from the pit within the centre of Structure 3, supporting this pattern identified with domestic structures.

Furthermore, the two human burials were situated immediately adjacent to the bank of the western boundary of the site, removed from the focus of the Iron Age settlement, although still enclosed within it. This may have been a meaningful liminal location, where death, danger and impurity could be moved to and dealt with safely so renewal and rebirth could be made possible.

Death and burial

Wait (1985) argues that only c. 5 % of the human population who died during the Early and Middle Iron Ages were archaeologically visible in some way, and this begs the question as to what happened to the other 95 %? It is often assumed that excarnation was carried out widely, presumably in designated areas away from the settlement site, with subsequent disposal in ways that left very little trace (e.g. cremated, scattered over fields, deposited in caves or rivers). This makes it all the more interesting as to why two formal Iron Age burials were encountered at Weston Down. To compare

with the large dataset from Danebury, although 28 complete skeletons were excavated, in only two cases were they found in formal graves (Cunliffe 1995, 73). Likewise closer to Weston Down, twelve complete burials were recovered from the banjo enclosure in Micheldever Wood (Fasham 1987, 15), but with one exception (an adolescent), they were all infants. Furthermore, all had been placed in storage pits or ditches.

With the exception of neonates, formal burial was a relatively uncommon practice during the Early and Middle Iron Ages in southern England (Wilson 1981; Cunliffe 1992, 76; 1995, 72; Carr & Knūsel 1997, 167). Human remains were buried more frequently within disused storage pits either as complete bodies, usually contracted, placed on pit bottoms or, more commonly, as fragments of dismembered bodies or skulls or isolated bones (Cunliffe 2000, 131). Like the animal remains, humans were undoubtedly deposited meaningfully (e.g. offerings to deities, sacrifices, war trophies or as ancestors – Cunliffe 1992, 79; 2000; Aldhouse Green 1998, 8–9).

Wilson (1981) and McKinley (1999) state that a flexed burial was the most typical form adopted in the Iron Age, and the head tended to be orientated between the north and east (see Whimster 1981, 11, 33). The two inhumations at Weston Down show a reversal of this tradition, with both heads pointing south. As well as their liminal location, as noted above, there is another point of note that may be significant. The burials were both adult females, potentially of reproductive age, and this emphasis on fertility is a point that will be expanded on below.

With the exception of pigs, all of the other animal bones that could be sexed were female, and this may be relevant in the context of Cunliffe's ideas relating to fertility and propitiation. The articulated horse skeleton from the base of pit 5069 was an adult female as was the domestic fowl from pit 5360. The latter is almost certainly a special deposit rather than a live animal that accidentally fell into the pit, since this species is rarely found in the Middle Iron Age, and when it does it is normally articulated (e.g. Hamilton 2000), suggesting non-functional deposition.

This particular individual was also unusual in having suffered a broken leg which had healed. It would be expected that this injured animal might have been culled if kept purely for functional reasons, but perhaps it was tended as a special possession. Significance may also be seen in the fact that this was a female in lay, indicated by the presence of medullary bone, which could add weight to the theory that propitiatory deposits were intended to promote fertility of the land.

Although the excavations at Weston Down only uncovered a small component of a large and complex Iron Age settlement landscape, the results of this project add an extra dimension to our understanding of the Iron Age in the chalk Downlands, within the wider environs of other sites in this region. Through bringing together all the various strands of the archaeological data, it has been possible to identify some interesting patterns in the nature of the pit assemblages from Weston Down. The interpretations that have been offered in this article very much follow on from the seminal work already undertaken on Iron Age settlement sites within the wider region. Attempting to unlock meaning and significance from past residues is fraught with difficulty. However, at Weston Down, as at other Iron Age sites, there seems to be a focus upon certain elements of material culture that embodies death, decay, fertility and the female. We may not know the real reasons as to why things were deposited in specific ways by the inhabitants of this site, but there is clearly some symbolism associated with seasonal cycles of birth and death. By adding to our datasets for the Iron Age, and for patterns of 'structured deposition' in particular, it is hoped that the site of Weston Down will contribute further to our understanding of the Middle Iron Age in Hampshire and further afield.

ACKNOWLEDGEMENTS

The excavation at Weston Down Cottages was commissioned by Penspen on behalf of Star Energy. Wessex Archaeology is grateful to Ron Hobby and Willie Everett of Penspen and Robin McKae

of Star Energy UK Onshore for their assistance during various stages of the project. The advice of Ian Wykes and David Hopkins of Hampshire County Council is also acknowledged.

The project was managed in the field by Mark Roberts and Paul McCulloch, and in post-excavation by Jörn Schuster. The fieldwork was directed by Catriona Gibson with Gail Mabbott and Steve Thompson as Site Supervisors. We would like to thank Steve Beech, Laura Catlin, Susan Clelland, Steve George, Neil Fitzpatrick, Cat McHarg, Dave Norcott, Gareth Owen, Matt Rous and Mark Stewart for all their hard work and enthusiasm in helping to excavate the site, sometimes in rather inclement conditions.

This text was edited and revised by Andrew Fitzpatrick, Jacqueline McKinley, and Jörn Schuster. Catriona Gibson would like to thank Andrew Fitzpatrick for the useful suggestions he made. Ultimately all the views taken in the text and any errors remain the responsibility of the authors.

The full archive is held at Wessex Archae-

ology but will be submitted in due course to Hampshire County Museum Services under the Accession Number A.2004.28.

The following specialist reports are associated with this paper. All are held in archive and are also available on demand (quoting Project Number 51991) from Wessex Archaeology: info@wessexarch.co.uk

Pottery from Weston Down Cottages by Lorraine Mepham

Small Finds from Weston Down Cottages by Matt Leivers

Two coins from Weston Down Cottages by Nicholas Cooke

Human Bone, Weston Down Cottages by Jacqueline I. McKinley

Animal bone from Weston Down Cottages by Stephanie Knight

Charred Plant Remains from Weston Down Cottages by Chris Stevens

Wood Charcoal Analysis, Weston Down Cottages by Catherine Chisham

REFERENCES

Adams, J C 1987 Outline of Fractures, London.

Aldhouse Green, M 1998 Human Sacrifice in Iron Age Europe, *British Archaeology*, October 1998 **38** 8–9.

Allen, M J 1995 Land molluscs, in Wainwright, G J & Davies, SM Balksbury Camp, Hampshire; excavations 1973 and 1981, English Heritage Archaeological Report 4 92–100.

Allen, M J, Morris, M & Clark, R H 1995 Food for the living: a reassessment of a Bronze Age barrow at Buckskin, Basingstoke, Hampshire, Proceedings of the Prehistoric Society 61 157-190.

Bayley, J & Butcher, S 2004 Roman Brooches in Britain: a technological and typological study based on the Richborough collection, The Society of Antiquaries (Reports of the Research Committee of the Society of Antiquaries of London) 68, London.

Bellamy, P 1992 The investigation of a prehistoric landscape along the route of the A303 road improvement between Andover, Hampshire and Amesbury, Wiltshire 1984–7 Proc Hampshire Fld Club Archaeol Soc 47 5–81.

Bersu, G 1940 Excavations at Little Woodbury. Wiltshire. Part 1: The Settlement revealed by excavation, Proceedings of the Prehistoric Society 29 30–111.

Brothwell, D R 1972 Digging Up Bones, British Museum (Nat. Hist.) London.

Brown, L 1995a Pottery production, in Cunliffe, B 1995, 53–65.

Brown, L 1995b An investigation of the validity of ceramic phases 4 and 5, in Cunliffe, B 1995, 246–8.

Brown, L 2000 The pottery, in Cunliffe, B W & Poole, C Suddern Farm, Middle Wallop, Hants, 1991 and 1996, The Danebury Evirons Programme: The Prehistory of a Wessex Landscape Vol. 2, Part 3; English Heritage & Oxford Univ. Comm. Archaeol. Monog. 49, 65–113.

Campbell, G 2000 Plant utilisation: the evidence from charred plant remains, in Cunliffe, B W The Danebury Environs Programme The prehistory of a Wessex Landscape Volume 1: Introduction, English Heritage and Oxford Univ. Comm. Archaeol. Monog. 48, 45–59.

- Carr, G & Knüsel, C 1997 The ritual framework of excarnation by exposure as the mortuary practice of the early and middle Iron Ages of central southern Britain, in Gwilt, A & Haselgrove, C (eds), Reconstructing Iron Age Societies: New Approaches to the British Iron Age, Oxbow Monograph 71, Oxford, 167–173.
- Carruthers W J 1989 The carbonised plant remains, in Fasham, P J, Farwell, D E & Whinney, R J B The archaeological site at Easton Lane, Winchester. Hampshire Field Club Monograph 6, Hampshire, 131–34.
- Charles, D 1980 Aspects of the chronology and distribution of Silchester ware Roman pottery, unpub. undergraduate dissertation, Univ. Reading.
- Collis, J R 1996 Hillforts, Enclosures and Boundaries, In Champion, T C & Collis, J R (eds), The Iron Age in Britain and Ireland: Recent Trends, Sheffield, 87–94.
- Crummy, N 1983 The Roman small finds, in *Excavations in Colchester 1971–9*, Colchester archaeological report 2, Colchester.
- Cunliffe, B W 1984 Danebury: An Iron Age Hillfort in Hampshire Volume 2 The excavations 1969– 1978: the finds, Council. Brit. Archaeol. Res. Rep. 52.
- Cunliffe, B W 1992 Pits, preconceptions and propitiation in the British Iron Age, Oxford Journal of Archaeology 11.1 69–83.
- Cunliffe, B W 1995 Danebury: An Iron Age Hillfort in Hampshire. Vol. 6. A hillfort community in perspective, CBA Research Report 102.
- Cunliffe, B W (ed.), 2000 The Danebury Environs Programme: the prehistory of a Wessex landscape, Vol. 1, English Heritage and Oxford University Committee for Archaeology Monograph 48, Oxford.
- Cunliffe, B W & Poole, C 2000 The Danebury Environs

 Programme The Prehistory of a Wessex

 Landscape, Volume 2, Part 2 Bury Hill,

 Upper Clatford, Hants, English Heritage
 and Oxford University Committee for

 Archaeology Monograph 49, Oxford.
- de Moulins, D 1995. Charred plant remains, in: Wainwright, G J & Davies, S M Balksbury Camp, Hampshire: Excavations 1973 and 1981, English Heritage Archaeological Report 4, London, 87–92
- Denison, S 1998 Hillforts only occupied in later years. British Archaeology, News, Issue 39.Dobney, K M, Jaques, S D & Irving, B G 1995 Of

- butchers and breeds. Report on vertebrate remains from various sites in the City of Lincoln, Lincoln Archaeological Studies 5, Lincoln.
- Ellis, CJ & Rawlings, M 2001 Excavations at Balksbury Camp, Andover 1995–97, Proc Hampshire Fld Club Archaeol Soc 56 21–94.
- Evans, C, Pollard, J & Knight, M 1999 Life in Woods: Tree-Throws, 'Settlement' and Forest Cognition, Oxford Journal of Archaeology 18 241–254.
- Fasham, P J 1987 A Banjo Enclosure in Micheldever Wood, Hampshire, Hampshire Field Club Monograph 5, Winchester.
- Fisher, P F 1982 A review of lessivage and Neolithic cultivation in southern England, *Journal* of Archaeology 9 299–304.
- Fitzpatrick, A P 1997 Everyday Life in Iron Age Wessex, in Gwilt, A & Haselgrove, C (eds), Reconstructing Iron Age Societies, Oxbow, Oxford, 73–86.
- Fulford, M G 1975 The pottery', in Cunliffe, B W (ed.), Excavations at Portchester Castle. Volume 1: Roman, Rep. Res. Comm. Soc. Antiq. London 32, 270–367.
- Gardiner, J 2002 Neolithic and Bronze Age, in Stoodley, N (ed.) The Millennium Publication: a review of Archaeology in Hampshire 1980–2000, Hampshire, 4–8.
- Grant, A 1984 Animal husbandry, in Cunliffe, B W Danebury: An Iron Age Hillfort in Hampshire; Vol. 2, The Excavations 1969–1978: the Finds. London: CBA Research Report, 52: 496–548.
- GSB 2004/02 Humbly Grove Transfer Project. Geophysical Survey, Unpublished Client Report, GSB Prospection, Bradford.
- Hamilton, J 2000 Animal bones, in Cunliffe, B W & Poole, C The Danebury Environs Programme.
 The Prehistory of a Wessex Landscape, Vol.
 2, Part 6, Houghton Down, Stockbridge, Hants, 1994, Oxford, English Heritage and Oxford University Committee for Archaeology Monograph 49, 131–146.
- Haselgrove, C, Armit, I, Champion, T, Creighton, J, Gwilt, A, Hill, J D, Hunter, F & Woodward, A 2001 Understanding the British Iron Age: an agenda for action: a report for the Iron Age Research Seminar and the Council of the Prehistoric Society, Salisbury, Trust for Wessex Archaeology.
- Hill, J D 1995 Ritual and Rubbish in the Iron Age of Wessex: a study on the formation of a specific

- archaeological record, BAR British Series 242, Oxford.
- Hill, J D 1996 Hill-forts and the Iron Age of Wessex, in Champion, T C & Collis, J R (eds), The Iron Age in Britain and Ireland: Recent Trends, Sheffield, 95–103.
- Hodder, I 1982 Symbolic and Structural Archaeology, Cambridge University Press, Cambridge.
- Holden, J L, Phakley, P P & Clement, J G 1995a Scanning electron microscope observations of incinerated human femoral bone: a case study, Forensic Science International 74 17–28.
- Holden, J L, Phakley, P P & Clement, J G 1995b Scanning electron microscope observations of heat-treated human bone, Forensic Science International 74 29–45.
- Hooper, B 1991 Anatomical considerations, in Cunliffe, B W & Poole, C Danebury, an Iron Age hillfort in Hampshire; Vol. 5 The excavations 1979–1988: the finds, CBA Research Report 73, 425–431.
- Hooper, B 2000 The human population in Cunliffe, B W The Danebury Environs Programme; The Prehistory of a Wessex Landscape; Volume 1 Introduction, English Heritage & Oxford University Committee for Archaeology Monograph 48, 127–8.
- Jones, M K 1981 The Development of Crop Husbandry, In Jones, M K and Dimbleby, G (eds), The Environment of Man, the Iron Age to the Anglo-Saxon Period, BAR, British Series 87, Oxford, 95–127.
- Jones, M 1984 The plant remains, in Cunliffe B W (ed), Danebury: An Iron Age Hillfort in Hampshire Volume 2 The excavations 1969–1978: the finds, CBA Research Report. 52, 483–95.
- Macphail, R I 1986 Palaeosols in archaeology; their role in understanding Flandrian pedogenesis, in Wright, P V (ed.), *Palaeosols*, Princetown University and Blackwell Press, 263–90.
- Macphail, R I 1987 Soil micromorphology of tree subsoil hollows, Circaea 5 14–17.
- Macphail, R I 1995 Soils, in Wainwright, G J & Davies, S M Balksbury Camp, Hampshire; excavations 1973 and 198,. English Heritage Archaeological Report 4, 100–104.
- Macphail, R I & Goldberg, P 1990 The micromorphology of tree subsoil hollows: their significance to soil science and

- archaeology, in Douglas, L (ed.), Soil Micromorphology: a basic and applied science, Amsterdam, 431–440.
- McKinley, J I 1999 Excavations at Tinney's Lane, Sherborne, Dorset, Proceedings of the Dorset Natural History and Archaeological Society 121 53–68.
- McKinley, J I 2002 Human Bone from Battlesbury Bowl, Warminster, Wiltshire, unpublished report for Wessex Archaeology
- McOmish, D 1989 Non-Hillfort Settlement and its implication, in Bowden, M, Mackay, D & Topping, P (eds), From Cornwall to Caithness. Some Aspects of British Field Archaeology, BAR British Series 208, Oxford, 99–110.
- Monk M A 1985 The plant economy, in Fasham P J, The prehistoric settlement at Winnall Down, Winchester, Hampshire Field Club Monograph 2, 112–7.
- Monk M A & Fasham P J 1980 Carbonised plant remains from two Iron Age sites in Central Hampshire, *Proceedings Prehis*toric Society 46 321-44.
- Moore, H L 1986 Space, Text and Gender: an anthropological study of the Marakwet of Kenya, Cambridge, Cambridge University Press.
- Morris, E L 1995a Pottery production and resource locations: an examination of the Danebury collection in Cunliffe, B W, 1995, 239–45.
- Morris, E L 1995b The organisation of pottery production and distribution in Iron Age Wessex', in Fitzpatrick, A P & Morris, E L (eds.), *The Iron Age in Wessex: Recent Work*, Association Francaise d'Etude de L'Age du Fer, 26–9.
- Oswald, A 1997 A doorway on the past: practical and mystic concerns in the orientation of roundhouse doorways, in Gwilt, A & Haselgrove, C (eds), Reconstructing Iron Age Societies, Oxford, 87–95.
- Outram, A & Rowley-Conwy, P 1998 Meat and marrow utility indices for horse, *Journal* of Archaeological Science 25 839–849.
- Parker Pearson, M 1996 Food, Fertility and Front Doors in the First Millennium BC, in Champion, T C & Collis, J R (eds), *The Iron Age in Britain and Ireland:* Recent Trends., Sheffield, J R Collis Publications, 117–132.
- Poole, C, 1984 Objects of baked clay, in Cunliffe, B W, 1984, 398–407.

- Poole, C 1991 The small object of daub and clay, in Sharples, N M Maiden Castle: Excavations and Field Survey 1985–6, English Heritage, London, 209–210.
- Poole, C 1995 Pits and propitiation, in Cunliffe, B W, 1995, 249–275.
- Rees, H 1995 Iron Age/Early Roman pottery, in Fasham, P J & Keevill, G Brighton Hill South (Hatch Warren): an Iron Age farmstead and deserted medieval village in Hampshire, Wessex Archaeol. Rep. 7, 35–46.
- Reynolds, P J 1981 Deadstock and Livestock, in Mercer, R (ed.) Farming Practices in British Prehistory, Edinburgh, 97–122.
- Riha, E. 1979 Die römischen Fibeln aus Augst und Kaiseraugst, Forschungen in Augst 3, Augst.
- Riha, E 1994 Die römischen Fibeln aus Augst und Kaiseraugst. Die Neufunde seit 1975, Forschungen in Augst 18, Augst.
- Schuster, J 2006 Die Buntmetallfunde der Grabung Feddersen Wierde, Feddersen Wierde 6 = Probleme der Küstenforschung im südlichen Nordseegebiet 30, Oldenburg.
- Stevens, C J 2003 An investigation of agricultural consumption and production models for prehistoric and Roman Britain, Environmental Archaeology 8 61–76.

- Thomas, KD 1977 The mollusca from an Iron Age pit at Winklebury, in Smith, K The excavation of Winklebury Camp, Basingstoke, Hampshire, *Proceedings of the Prehistoric* Society 43 70–74.
- van der Veen, M 1991 Charred grain assemblages from the Roman-Period corn driers in Britain, Archaeological Journal 146 (for 1989) 302–29.
- Wait, G A 1985 Ritual and religion in Iron Age Britain, BAR British Series 149, Oxford.
- Wessex Archaeology 2004 Humbly Grove Gas Transfer Project, Hampshire: Archaeological Evaluation and Excavation 2003–2004, Post-Excavation Assessment Report, unpubl. WA Rpt. No. 51991.05.
- Whimster, R 1981 Burial practices in Iron Age Britain: a discussion and gazetteer of the evidence c. 700 B.C.-A.D.43, BAR British Series 90, Oxford.
- Wilson, CE 1981 Burials with settlements in southern Britain during the pre-Roman Iron Age, Bulletin of the Institute of Archaeology 18 127–69.

Authors: Catriona Gibson, Lorraine Mepham, Sheila Hamilton-Dyer, Jacqueline I. McKinley, Matt Leivers, Jörn Schuster, Chris Stevens, Catherine Chisham, Nicholas Cooke, Elizabeth James, Wessex Archaeology, Portway House, Old Sarum Park, Salisbury, Wiltshire SP4 6EB. Stephanie Knight, Devon County Council, County Hall, Topsham Road, Exeter, EX2 4QW. Michael Allen, Allen Environmental Archaeology, Redroof, Green Road, Codford, BA12 0NW

© Hampshire Field Club and Archaeological Society